Bond Strengths of Composite Resins used for the Attachment of Bonded Retainers
DOI:
https://doi.org/10.24191/cos.v3i0.17515Keywords:
bonded retainer, composite resin, flowable resin, shear bond strength, tensile bond strengthAbstract
Objectives: To compare the bond strengths and survival of flowable and non -flowable composite resins used with bonded retainers. Setting: Department of Orthodontics, UCL Eastman Dental Institute, United Kingdom. Methods: Flowable composite resins (TransbondTM Supreme LV, StarFlowTM and Tetric EvoFlow®) and non-flowable control resin (TransbondTM LR) were made into cylinders prior to bonding to hydoxyapatite discs. They were then mounted into jigs and tested in the InstronTM Universal Testing Machine in both shear and tensile modes. Results: The highest mean shear bond strength was seen with StarFlowTM (14.09 MPa), which was significantly higher than both TransbondTM LR (9.48 MPa) and TransbondTM Supreme LV (8.20 MPa). The mean shear bond strength of Tetric EvoFlow® (11.86 MPa) was also significantly higher than TransbondTM Supreme LV. The highest mean tensile bond strength was seen with Tetric EvoFlow® (2.14 MPa), which was significantly higher than TransbondTM LR (1.15 MPa) and TransbondTM Supreme LV (0.61 MPa) but not significantly different to StarFlowTM (1.47 MPa). For shear loading, StarFlowTM had the highest 50th percentile survival estimate at 15.10 MPa, followed by Tetric EvoFlow® (13.00 MPa) and TransbondTM Supreme LV (7.50 MPa). TransbondTM LR had a 50th percentile estimate at 9.00 MPa. For tensile loading, Tetric EvoFlow® had the highest 50th percentile survival estimate at 2.50 MPa, followed by StarFlowTM (1.30 MPa) and TransbondTM Supreme LV (0.50 MPa). TransbondTM LR had a 50th percentile estimate at 1.00 MPa. Conclusions: Mean shear bond strengths for all of the resins were significantly higher than the mean tensile bond strengths. StarFlowTM and Tetric EvoFlow® could potentially be suitable clinical alternatives to TransbondTM LR due to its low viscosity flow characteristics and adequate shear and tensile bond strengths.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Compendium of Oral Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Materials contained in the journal may be reproduced for educational purposes provided that both the author(s) and the journal are appropriately recognised; otherwise duplication is not permitted. No articles, reports, or portions there of may be translated into other languages, published in books, journals, magazines, or any other print form without written permission from the authors and from the journal.
Disclaimer: The statements, opinions and data expressed in the articles and reports herein are those of the author(s) and not of the publisher and the editor(s). The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any schemes, methods, instructions or ideas referred to in the content.