Orthodontic Mini Implant, a Narrative Review

Authors

  • Suzanne Husun Reginald Iggan Ministry of Health, Malaysia
  • Muhamad Nizam Muhamad Subra Centre of Paediatric Dentistry and Orthodontics Studies, Faculty of Dentistry, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
  • Nor Amlizan Ramli Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam,Selangor, Malaysia
  • Maryati Md Dasor Centre of Paediatric Dentistry and Orthodontics Studies, Faculty of Dentistry, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia

DOI:

https://doi.org/10.24191/cos.v12i2.8826

Keywords:

mini-implant, orthodontics, overview, surface-treated mini-implant, anchorage

Abstract

Introduction: The refinement in anchorage management in recent years has magnified the superiority of the mini-implant (MI). Behind the vast clinical literature and low failure rates (Alharbi et al., 2018a), there is a steep learning curve. The lack of updated information on MI focused on understanding the multifactorial success has led to a new area in developing MI research for surface treatment and clinical application. Objective: This comprehensive review aims to address the different variables contributing to MI success. Methods: The articles were identified electronically (PubMed, Scopus, Google Scholar), ranging from 2018 to date. The articles were independently reviewed by two reviewers (SHR and MMD). Randomised clinical trials (RCT), longitudinal studies, cohort, and case/control studies, both retrospective and prospective, were all included. The following search terms were used: mini-implant orthodontics; mini-implant design; surface treated mini-implant; mini-implant success; mini-implant clinical application; mini-implant complications. Conclusions: The application of MI in orthodontics is bounded by biological factors, geometry, and operational factors. Surface modifications of MI are performed in various ways to increase the primary stability, and the clinical application of MI has expanded in complex cases to mimic surgical correction. The known risks and complications of MI provide sufficient knowledge to negate any problems encountered in clinical situations. It is critical to recognise that MI has its pearls and pitfalls, and we must constantly refine our understanding and clinical applications to maximise the success rate of MI use.

References

Aboshady, H., Abouelezz, A. M. A., Fotouh, M. H. A., & Elkordy, S. A. M. (2022). Failure Rate of Orthodontic Mini-screw after Insertion using 3D Printed Guide versus Conventional Free Hand Placement Technique: Split Mouth Randomized Clinical Trial. Open Access Macedonian Journal of Medical Sciences, 10(D), 6–13. https://doi.org/10.3889/oamjms.2022.7616.

Alharbi, F., Almuzian, M., & Bearn, D. (2018a). Miniscrews failure rate in orthodontics: Systematic review and meta-analysis. European Journal of Orthodontics, 40(5), 519–530. https://doi.org/10.1093/ejo/cjx093.

Alharbi, F., Almuzian, M., & Bearn, D. (2018b). Miniscrews failure rate in orthodontics: Systematic review and meta-analysis. European Journal of Orthodontics, 40(5), 519–530. https://doi.org/10.1093/ejo/cjx093.

Alharbi, F., Almuzian, M., & Bearn, D. (2019a). Anchorage effectiveness of orthodontic miniscrews compared to headgear and transpalatal arches: a systematic review and meta-analysis. Acta Odontologica Scandinavica, 77(2), 88–98. https://doi.org/10.1080/00016357.2018.1508742.

Alharbi, F., Almuzian, M., & Bearn, D. (2019b). Anchorage effectiveness of orthodontic miniscrews compared to headgear and transpalatal arches: a systematic review and meta-analysis. In Acta Odontologica Scandinavica (Vol. 77, Issue 2, pp. 88–98). Taylor and Francis Ltd. https://doi.org/10.1080/00016357.2018.1508742.

Alves, M., Baratieri, C., Mattos, C. T., de Souza Araújo, M. T., & Maia, L. C. (2013). Root repair after contact with mini-implants: Systematic review of the literature. European Journal of Orthodontics, 35(4), 491–499. https://doi.org/10.1093/ejo/cjs025.

Att, W., Hori, N., Takeuchi, M., Ouyang, J., Yang, Y., Anpo, M., & Ogawa, T. (2009). Time-dependent degradation of titanium osteoconductivity: An implication of biological aging of implant materials. Biomaterials, 30(29), 5352–5363. https://doi.org/10.1016/j.biomaterials.2009.06.040.

Barros, S. E., Vanz, V., Chiqueto, K., Janson, G., & Ferreira, E. (2021). Mechanical strength of stainless steel and titanium alloy mini-implants with different diameters: an experimental laboratory study. Progress in Orthodontics, 22(1). https://doi.org/10.1186/s40510-021-00352-w.

Barthélemi, S., Desoutter, A., Souaré, F., & Cuisinier, F. (2019). Effectiveness of anchorage with temporary anchorage devices during anterior maxillary tooth retraction: A randomized clinical trial. The Korean Journal of Orthodontics, 49(5), 279. https://doi.org/10.4041/kjod.2019.49.5.279.

Baumgaertel, S. (2014). Hard and soft tissue considerations at mini-implant insertion sites. Journal of Orthodontics, 41, S3–S7. https://doi.org/10.1179/1465313314Y.0000000104.

Baumgaertel, S., & Tran, T. T. (2012). Buccal mini-implant site selection: the mucosal fallacy and zones of opportunity. JCO, 46(7), 434–436.

Bayome, M., Park, J. H., Bay, C., & Kook, Y. A. (2021). Distalization of maxillary molars using temporary skeletal anchorage devices: A systematic review and meta-analysis. Orthodontics and Craniofacial Research, 24(S1), 103–112. https://doi.org/10.1111/ocr.12470.

Berglundh, T., Abrahamsson, I., Albouy, J. P., & Lindhe, J. (2007). Bone healing at implants with a fluoride-modified surface: An experimental study in dogs. Clinical Oral Implants Research. https://doi.org/10.1111/j.1600-0501.2006.01309.x.

Brunetto, D. P., Moschik, C. E., Mompell, R. D., Jaria, E., Franzotti, E., Anna, S., & Moon, W. (2022). Mini-implant assisted rapid palatal expansion ( MARPE ) effects on adult obstructive sleep apnea ( OSA ) and quality of life: a multi-center prospective controlled trial. Progress in Orthodontics. https://doi.org/10.1186/s40510-021-00397-x.

Centeno, A. C. T., Fensterseifer, C. K., Chami, V. de O., Ferreira, E. S., Marquezan, M., & Ferrazzo, V. A. (2022). Correlation between cortical bone thickness at mini-implant insertion sites and age of patient. Dental Press Journal of Orthodontics, 27(1), e222098. https://doi.org/10.1590/2177-6709.27.1.e222098.oar.

Chen, X., Zhou, X. C., Liu, S., Wu, R. F., Aparicio, C., & Wu, J. Y. (2017). In vivo osseointegration of dental implants with an antimicrobial peptide coating. Journal of Materials Science: Materials in Medicine, 28(5). https://doi.org/10.1007/s10856-017-5885-8.

Chen, Y., Kyung, H. M., Zhao, W. T., & Yu, W. J. (2009). Critical factors for the success of orthodontic mini-implants: A systematic review. American Journal of Orthodontics and Dentofacial Orthopedics, 135(3), 284–291. https://doi.org/10.1016/j.ajodo.2007.08.017.

Cho, I.-S., Baek, S.-H., & Kim, Y. H. (2013). Effects of wobbling angle on the stability measures of orthodontic mini-implants during insertion and removal procedures. Angle Orthodontist, 83(6), 1009–1014. https://doi.org/10.2319/021513-134.1.

Cicciù, M., Fiorillo, L., Herford, A. S., Crimi, S., Bianchi, A., D’Amico, C., Laino, L., & Cervino, G. (2019). Bioactive titanium surfaces: Interactions of eukaryotic and prokaryotic cells of nano devices applied to dental practice. Biomedicines, 7(1). https://doi.org/10.3390/biomedicines7010012.

Costa, A. C. de F., Maia, T. A. C., de Barros Silva, P. G., Abreu, L. G., Gondim, D. V., & Santos, P. C. F. (2021). Effects of low-level laser therapy on the orthodontic mini-implants stability: a systematic review and meta-analysis. In Progress in Orthodontics (Vol. 22, Issue 1). https://doi.org/10.1186/s40510-021-00350-y

Cousley, R. (2020). The orthodontic Mini-Implant Clinical Handbook.

Cruz, R. M. (2019). Orthodontic traction of impacted canines: Concepts and clinical application. Dental Press Journal of Orthodontics, 24(1), 74–87. https://doi.org/10.1590/2177-6709.24.1.074-087.bbo.

Cunha, A. C., da Veiga, A. M. A., Masterson, D., Mattos, C. T., Nojima, L. I., Nojima, M. C. G., & Maia, L. C. (2017). How do geometry-related parameters influence the clinical performance of orthodontic mini-implants? A systematic review and meta-analysis. International Journal of Oral and Maxillofacial Surgery, 46(12), 1539–1551. https://doi.org/10.1016/j.ijom.2017.06.010.

di Stefano, D. A., Arosio, P., Capparè, P., Barbon, S., & Gherlone, E. F. (2021). Stability of dental implants and thickness of cortical bone: Clinical research and future perspectives. a systematic review. In Materials (Vol. 14, Issue 23). https://doi.org/10.3390/ma14237183.

Doe, Y., Ida, H., Seiryu, M., Deguchi, T., Takeshita, N., Sasaki, S., Sasaki, S., Irie, D., Tsuru, K., Ishikawa, K., & Takano-Yamamoto, T. (2020). Titanium surface treatment by calcium modification with acid-etching promotes osteogenic activity and stability of dental implants. Materialia, 12, 100801. https://doi.org/10.1016/j.mtla.2020.100801.

Farnsworth, D., Rossouw, P. E., Ceen, R. F., & Buschang, P. H. (2011). Cortical bone thickness at common miniscrew implant placement sites. American Journal of Orthodontics and Dentofacial Orthopedics, 139(4), 495–503. https://doi.org/10.1016/j.ajodo.2009.03.057.

Gansukh, O., Jeong, J. W., Kim, J. W., Lee, J. H., & Kim, T. W. (2016). Mechanical and Histological Effects of Resorbable Blasting Media Surface Treatment on the Initial Stability of Orthodontic Mini-Implants. BioMed Research International, 2016. https://doi.org/10.1155/2016/7520959.

Gehrke, S. A., Aramburú Júnior, J. S., Pérez-Albacete Martínez, C., Ramirez Fernandez, M. P., Maté Sánchez de Val, J. E., & Calvo-Guirado, J. L. (2018). The influence of drill length and irrigation system on heat production during osteotomy preparation for dental implants: an ex vivo study. Clinical Oral Implants Research, 29(7), 772–778. https://doi.org/10.1111/clr.12827.

Golshah, A., Gorji, K., & Nikkerdar, N. (2021). Effect of miniscrew insertion angle in the maxillary buccal plate on its clinical survival: a randomized clinical trial. Progress in Orthodontics, 22(1). https://doi.org/10.1186/s40510-021-00370-8.

Graber. (2007). Orthodontics Current Principles and Techniques.

Hosein, Y. K., Jeffrey Dixon, S., Rizkalla, A. S., & Tassi, A. (2017). A Comparison of the Mechanical Measures Used for Assessing Orthodontic Mini-Implant Stability. Implant Dentistry, 26(2), 225–231. https://doi.org/10.1097/ID.0000000000000514.

Hosein, Y. K., Jeffrey Dixon, S., Rizkalla, A. S., & Tassi, A. (2019). A novel technique for measurement of orthodontic mini-implant stability using the Osstell ISQ device. Angle Orthodontist, 89(2), 284–291. https://doi.org/10.2319/011518-46.1.

Huja, S. S., Katona, T. R., Burr, D. B., Garetto, L. P., & Roberts, W. E. (1999). Microdamage adjacent to endosseous implants. Bone, 25(2), 217–222. https://doi.org/10.1016/S8756-3282(99)00151-9.

Jang, T. H., Park, J. H., Moon, W., Chae, J. M., Chang, N. Y., & Kang, K. H. (2018). Effects of acid etching and calcium chloride immersion on removal torque and bone-cutting ability of orthodontic mini-implants. American Journal of Orthodontics and Dentofacial Orthopedics, 154(1), 108–114. https://doi.org/10.1016/j.ajodo.2017.10.032.

Jedlí Nski, M., Janiszewska-Olszowska, J., Mazur, M., Ottolenghi, L., Grocholewicz, K., & Galluccio, G. (2021). Guided Insertion of Temporary Anchorage Device in Form of Orthodontic Titanium Miniscrews with Customized 3D Templates—A Systematic Review with Meta-Analysis of Clinical Studies. Coatings, 11(12), 1488. https://doi.org/10.3390/coatings11121488.

Jubhari, E. H., Dammar, I., Launardo, V., & Goan, Y. (2020). Implant coating materials to increase osseointegration of dental implant: A systematic review. Systematic Reviews in Pharmacy, 11(12), 35–41. https://doi.org/10.31838/srp.2020.12.6

Kim, G. T., Jin, J., Mangal, U., Lee, K. J., Kim, K. M., Choi, S. H., & Kwon, J. S. (2020). Primary stability of orthodontic titanium miniscrews due to cortical bone density and re-insertion. Materials, 13(19), 1–12. https://doi.org/10.3390/ma13194433

Kim, H. J., Yun, H. S., Park, H. do, Kim, D. H., & Park, Y. C. (2006). Soft-tissue and cortical-bone thickness at orthodontic implant sites. American Journal of Orthodontics and Dentofacial Orthopedics, 130(2), 177–182. https://doi.org/10.1016/j.ajodo.2004.12.024

Kim, S. J., Ha, Y. D., Kim, E., Jang, W., Hwang, S., Nguyen, T., Ko, C. C., Choi, Y. J., Kim, K. H., & Chung, C. J. (2019). Dynamics of alveolar bone healing after the removal of orthodontic temporary anchorage devices. Journal of Periodontal Research, 54(4), 388–395. https://doi.org/10.1111/jre.12640

Kottemann, W. J. (2020). The use of TADs with clear aligners for asymmetry correction. Temporary Anchorage Devices in Clinical Orthodontics, 52, 555–562. https://doi.org/10.1002/9781119513636.ch52.

Kuroda, S., Sugawara, Y., Deguchi, T., Kyung, H. M., & Takano-Yamamoto, T. (2007). Clinical use of miniscrew implants as orthodontic anchorage: Success rates and postoperative discomfort. American Journal of Orthodontics and Dentofacial Orthopedics, 131(1), 9–15. https://doi.org/10.1016/J.AJODO.2005.02.032.

Kuroda, S., & Tanaka, E. (2014). Risks and complications of miniscrew anchorage in clinical orthodontics. Japanese Dental Science Review, 50(4), 79–85. https://doi.org/10.1016/J.JDSR.2014.05.001.

Lee, J. A., Ahn, H. W., Oh, S. H., Park, K. H., Kim, S. H., & Nelson, G. (2021). Evaluation of interradicular space, soft tissue, and hard tissue of the posterior palatal alveolar process for orthodontic mini-implant, using cone-beam computed tomography. American Journal of Orthodontics and Dentofacial Orthopedics, 159(4), 460–469. https://doi.org/10.1016/j.ajodo.2020.01.019.

Lee, T. C. K., McGrath, C. P. J., Wong, R. W. K., & Rabie, A. B. M. (2008). Patients’ perceptions regarding microimplant as anchorage in orthodontics. Angle Orthodontist, 78(2), 228–233. https://doi.org/10.2319/040507-172.1.

Li, T., Gulati, K., Wang, N., Zhang, Z., & Ivanovski, S. (2018). Understanding and augmenting the stability of therapeutic nanotubes on anodized titanium implants. Materials Science and Engineering C, 88(March), 182–195. https://doi.org/10.1016/j.msec.2018.03.007.

Liu, H., Wu, X., Yang, L., & Ding, Y. (2017). Safe zones for miniscrews in maxillary dentition distalization assessed with cone-beam computed tomography. American Journal of Orthodontics and Dentofacial Orthopedics, 151(3), 500–506. https://doi.org/10.1016/j.ajodo.2016.07.021.

Ludwig, B., Baumgaertel, S., & Bohm, bern hard. (2000). Mini-Implant in Orthodontic.pdf.

Luzi, C., Verna, C., & Melsen, B. (2009). Guidelines for success in placement of orthodontic mini-implants. Journal of Clinical Orthodontics : JCO, 43(1), 39–44.

Lyu, X., Guo, J., Chen, L., Gao, Y., Liu, L., Pu, L., Lai, W., & Long, H. (2020). Assessment of available sites for palatal orthodontic mini-implants through cone-beam computed tomography. Angle Orthodontist, 90(4), 516–523. https://doi.org/10.2319/070719-457.1.

Matys, J., Flieger, R., Tenore, G., Grzech-Leśniak, K., Romeo, U., & Dominiak, M. (2018). Er:YAG laser, piezosurgery, and surgical drill for bone decortication during orthodontic mini-implant insertion: primary stability analysis—an animal study. Lasers in Medical Science, 33(3), 489–495. https://doi.org/10.1007/s10103-017-2381-9.

Mecenas, P., Espinosa, D. G., Cardoso, P. C., & Normando, D. (2020). Stainless steel or titanium mini-implants? The Angle Orthodontist, 90(4), 587–597. https://doi.org/10.2319/081619-536.1.

Meursinge Reynders, R. A., Ronchi, L., Ladu, L., Van Etten-Jamaludin, F., & Bipat, S. (2012). Insertion torque and success of orthodontic mini-implants: A systematic review. American Journal of Orthodontics and Dentofacial Orthopedics, 142(5), 596-614.e5. https://doi.org/10.1016/j.ajodo.2012.06.013.

Michelogiannakis, D., Jabr, L., Barmak, A. B., Rossouw, P. E., Kotsailidi, E. A., & Javed, F. (2022). Influence of low-level-laser therapy on the stability of orthodontic mini-screw implants. A systematic review and meta-analysis. European Journal of Orthodontics, 44(1), 11–21. https://doi.org/10.1093/ejo/cjab016.

Migliorati, M., Cevidanes, L., Sinfonico, G., Drago, S., Dalessandri, D., Isola, G., & Biavati, A. S. (2021). Three dimensional movement analysis of maxillary impacted canine using TADs: a pilot study. In Head and Face Medicine (Vol. 17, Issue 1). https://doi.org/10.1186/s13005-020-00252-0.

Migliorati, M., Drago, S., Gallo, F., Amorfini, L., Dalessandri, D., Calzolari, C., Benedicenti, S., & Silvestrini-Biavati, A. (2016). Immediate versus delayed loading: Comparison of primary stability loss after miniscrew placement in orthodontic patients - A single-centre blinded randomized clinical trial. European Journal of Orthodontics, 38(6), 652–659. https://doi.org/10.1093/ejo/cjv095.

Migliorati, M., Signori, A., & Silvestrini Biavati, A. (2012). Temporary anchorage device stability: An evaluation of thread shape factor. European Journal of Orthodontics, 34(5), 582–586. https://doi.org/10.1093/ejo/cjr026.

Miyazawa, K., Shibata, M., Tabuchi, M., Kawaguchi, M., Shimura, N., & Goto, S. (2021). Optimal sites for orthodontic anchor screw placement using panoramic images: risk of maxillary sinus perforation and contact with adjacent tooth roots during screw placement. Progress in Orthodontics, 22, 46. https://doi.org/10.1186/s40510-021-00393-1.

Moghaddam, S. F., Mohammadi, A., & Behroozian, A. (2021). The effect of sandblasting and acid etching on survival rate of orthodontic miniscrews: a split-mouth randomized controlled trial. In Progress in Orthodontics (Vol. 22, Issue 1). https://doi.org/10.1186/s40510-020-00347-z.

Mohammed, H., Wafaie, K., Rizk, M. Z., Almuzian, M., Sosly, R., & Bearn, D. R. (2018). Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants: a systematic review and meta-analysis. Progress in Orthodontics, 19(1), 1–18. https://doi.org/10.1186/s40510-018-0225-1.

Mohd Ali, N. D., Al-Jaf, N. M., & Norman, N. H. (2021). The orthodontic mini implants covers and their effect on the oral health related quality of life: A randomised controlled trial. International Medical Journal, 28(3), 352–356.

Möhlhenrich, S. C., Heussen, N., Modabber, A., Kniha, K., Hölzle, F., Wilmes, B., Danesh, G., & Szalma, J. (2020). Influence of bone density, screw size and surgical procedure on orthodontic mini-implant placement – part A: temperature development. International Journal of Oral and Maxillofacial Surgery. https://doi.org/10.1016/j.ijom.2020.07.004.

Motoyoshi, M., Hirabayashi, M., Uemura, M., & Shimizu, N. (2006). Recommended placement torque when tightening an orthodontic mini-implant. Clinical Oral Implants Research, 17(1), 109–114. https://doi.org/10.1111/j.1600-0501.2005.01211.x.

Motoyoshi, M., Inaba, M., Ono, A., Ueno, S., & Shimizu, N. (2009). The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone. International Journal of Oral and Maxillofacial Surgery, 38(1), 13–18. https://doi.org/10.1016/j.ijom.2008.09.006.

Nor, N. F. M., Sinniah, S. D., & Dasor, M. M. (2019). Comparison of three methods of orthodontic anchorage: A prospective study. Journal of International Dental and Medical Research, 12(1), 185–191.

Ntolou, P., Tagkli, A., & Pepelassi, E. (2018). Factors related to the clinical application of orthodontic mini-implants. Journal of International Oral Health, 10(3), 103–110. https:// 10.4103/jioh.jioh_28_18.

Oh, E. J., Nguyen, T. D. T., Lee, S. Y., Jeon, Y. M., Bae, T. S., & Kim, J. G. (2014). Enhanced compatibility and initial stability of Ti6Al4V alloy orthodontic miniscrews subjected to anodization, Cyclic precalcification, And heat treatment. Korean Journal of Orthodontics, 44(5), 246–253. https://doi.org/10.4041/kjod.2014.44.5.246.

Oh, N. H., Kim, E. Y., Paek, J., Kook, Y. A., Jeong, D. M., Cho, I. S., & Nelson, G. (2014). Evaluation of stability of surface-treated mini-implants in diabetic rabbits. International Journal of Dentistry, 2014. https://doi.org/10.1155/2014/838356.

Pan, C. Y., Liu, P. H., Tseng, Y. C., Chou, S. T., Wu, C. Y., & Chang, H. P. (2019a). Effects of cortical bone thickness and trabecular bone density on primary stability of orthodontic mini-implants. Journal of Dental Sciences, 14(4), 383–388. https://doi.org/10.1016/j.jds.2019.06.002.

Pan, C. Y., Liu, P. H., Tseng, Y. C., Chou, S. T., Wu, C. Y., & Chang, H. P. (2019b). Effects of cortical bone thickness and trabecular bone density on primary stability of orthodontic mini-implants. Journal of Dental Sciences, 14(4), 383–388. https://doi.org/10.1016/j.jds.2019.06.002.

Papageorgiou, S. N., Zogakis, I. P., & Papadopoulos, M. A. (2012). Failure rates and associated risk factors of orthodontic miniscrew implants: A meta-analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 142(5), 577-595.e7. https://doi.org/10.1016/j.ajodo.2012.05.016.

Park, C., Lim, J. H., Tallarico, M., Hwang, K., Choi, H., Cho, G., Kim, C., Jang, I., Song, J., Kwon, A. M., Jeon, S. H., & Park, H. (2020). Coating of a Sand-Blasted and Acid-Etched. 1–11.

Park, J. H. (2020). Temporary Anchorage Devices in Clinical Orthodontics.

Park, J. J., Park, Y. C., Lee, K. J., Cha, J. Y., Tahk, J. H., & Choi, Y. J. (2017). Skeletal and dentoalveolar changes after miniscrew-assisted rapid palatal expansion in young adults: A cone-beam computed tomography study. Korean Journal of Orthodontics, 47(2), 77–86. https://doi.org/10.4041/kjod.2017.47.2.77.

Parmar, R., Reddy, V., Reddy, S. K., & Reddy, D. (2016). Determination of soft tissue thickness at orthodontic miniscrew placement sites using ultrasonography for customizing screw selection. American Journal of Orthodontics and Dentofacial Orthopedics, 150(4), 651–658. https://doi.org/10.1016/j.ajodo.2016.03.026.

Pellegrino, G., Bellini, P., Cavallini, P. F., Ferri, A., Zacchino, A., Taraschi, V., Marchetti, C., & Consolo, U. (2020). Dynamic navigation in dental implantology: The influence of surgical experience on implant placement accuracy and operating time. An in vitro study. International Journal of Environmental Research and Public Health, 17(6). https://doi.org/10.3390/ijerph17062153.

Pickard, M. B., Dechow, P., Rossouw, P. E., & Buschang, P. H. (2010). Effects of miniscrew orientation on implant stability and resistance to failure. American Journal of Orthodontics and Dentofacial Orthopedics, 137(1), 91–99. https://doi.org/10.1016/j.ajodo.2007.12.034.

Prabhu, J., & Cousley, R. R. J. (2006). Current products and practice: Bone anchorage devices in orthodontics. Journal of Orthodontics, 33(4), 288–307. https://doi.org/10.1179/146531205225021807.

Ramírez-Ossa, D. M., Escobar-Correa, N., Ramírez-Bustamante, M. A., & Agudelo-Suárez, A. A. (2020). An Umbrella Review of the Effectiveness of Temporary Anchorage Devices and the Factors That Contribute to Their Success or Failure. Journal of Evidence-Based Dental Practice, 20(2), 101402. https://doi.org/10.1016/j.jebdp.2020.101402.

Reynders, R., Ronchi, L., & Bipat, S. (2009). Mini-implants in orthodontics: A systematic review of the literature. American Journal of Orthodontics and Dentofacial Orthopedics, 135(5), 564.e1-564.e19. https://doi.org/10.1016/j.ajodo.2008.09.026.

Roberts-Harry, D., & Sandy, J. (2004). PRACTICE Orthodontics. Part 9: Anchorage control and distal movement. British dental journal volume, 196(5). https://doi.org/10.1038/sj.bdj.4811031.

Rupp, F., Liang, L., Geis-Gerstorfer, J., Scheideler, L., & Hüttig, F. (2018). Surface characteristics of dental implants: A review. Dental Materials, 34(1), 40–57. https://doi.org/10.1016/j.dental.2017.09.007.

Sampson, A., Figueiredo, D. S. F., Jeremiah, H. G., Oliveira, D. D., Freitas, L. R. P., Chahoud, M., Soares, R. v, & Cobourne, M. T. (2021). The effect of social media on patient acceptance of temporary anchorage devices. The Angle Orthodontist, 91(3), 363–370. https://doi.org/10.2319/071020-618.1.

Sánchez-Pérez, A., Moya-Villaescusa, M. J., & Caffesse, R. G. (2007). Tobacco as a Risk Factor for Survival of Dental Implants. Journal of Periodontology, 78(2), 351–359. https://doi.org/10.1902/jop.2007.060299.

Sandler, J., Murray, A., Thiruvenkatachari, B., Gutierrez, R., Speight, P., & O’Brien, K. (2014). Effectiveness of 3 methods of anchorage reinforcement for maximum anchorage in adolescents: A 3-arm multicenter randomized clinical trial. American Journal of Orthodontics and Dentofacial Orthopedics, 146(1), 10–20. https://doi.org/10.1016/j.ajodo.2014.03.020.

Sennerby, L., & Meredith, N. (2008). Implant stability measurements using resonance frequency analysis: Biological and biomechanical aspects and clinical implications. Periodontology 2000, 47(1), 51–66. https://doi.org/10.1111/j.1600-0757.2008.00267.x.

Sheibaninia, A. (2020). Failure Rate and Associated Factors with Use of Mini-Screws in Orthodontic Treatments: A Systematic Review and Meta-analysis. International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR), 10(4), 22–27.

Skeie, M. S., Gil, E. G., Cetrelli, L., Rosén, A., Fischer, J., Åstrøm, A. N., Luukko, K., Shi, X., Feuerherm, A. J., Sen, A., Frid, P., Rygg, M., & Bletsa, A. (2019). Oral health in children and adolescents with juvenile idiopathic arthritis - A systematic review and meta-analysis. BMC Oral Health, 19(1). https://doi.org/10.1186/s12903-019-0965-4.

Tepedino, M., Cattaneo, P. M., Niu, X., & Cornelis, M. A. (2020). Interradicular sites and cortical bone thickness for miniscrew insertion: A systematic review with meta-analysis. American Journal of Orthodontics and Dentofacial Orthopedics. https://doi.org/10.1016/j.ajodo.2020.05.011.

Traini, T., Murmura, G., Sinjari, B., Perfetti, G., Scarano, A., D’Arcangelo, C., & Caputi, S. (2018). The surface anodization of titanium dental implants improves blood clot formation followed by osseointegration. Coatings, 8(7). https://doi.org/10.3390/coatings8070252.

Velasco-Ortega, E., Ortiz-García, I., Jiménez-Guerra, A., Monsalve-Guil, L., Muñoz-Guzón, F., Perez, R. A., & Gil, F. J. (2019). Comparison between sandblasted acid-etched and oxidized titanium dental implants: In vivo study. International Journal of Molecular Sciences, 20(13). https://doi.org/10.3390/ijms20133267.

W. Nicholson, J. (2020). Titanium Alloys for Dental Implants: A Review. Prosthesis, 2(2), 100–116. https://doi.org/10.3390/prosthesis2020011.

Wilmes, B., Su, Y. Y., & Drescher, D. (2008). Insertion angle impact on primary stability of orthodontic mini-implants. Angle Orthodontist, 78(6), 1065–1070. https://doi.org/10.2319/100707-484.1.

Yassir, Y. A., Nabbat, S. A., McIntyre, G. T., & Bearn, D. R. (2022). Which anchorage device is the best during retraction of anterior teeth? An overview of systematic reviews. Korean Journal of Orthodontics, 52(3), 220–235. https://doi.org/10.4041/kjod21.153.

Zawawi, K. H. (2014). Acceptance of orthodontic miniscrews as temporary anchorage devices. Patient Preference and Adherence, 8, 933–937. https://doi.org/10.2147/PPA.S66133.

Zhang, J. N., Lu, H. P., Bao, X. C., Shi, Y., & Zhang, M. H. (2019). Evaluation of the long-term stability of micro-screws under different loading protocols: A systematic review. Brazilian Oral Research, 33, 1–13. https://doi.org/10.1590/1807-3107BOR-2019.VOL33.0046.

Zhang, Q., Zhao, L., Wu, Y., Wang, H., Zhao, Z., Xu, Z., Wei, X., & Tang, T. (2011). The effect of varying healing times on orthodontic mini-implant stability: A microscopic computerized tomographic and biomechanical analysis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, 112(4), 423–429. https://doi.org/10.1016/j.tripleo.2010.10.042.

Zhang, S., Wei, X., Wang, L., Wu, Z., Liu, L., Yan, X., Lai, W., & Long, H. (2022). Evaluation of Optimal Sites for the Insertion of Orthodontic Mini Implants at Mandibular Symphysis Region through Cone-Beam Computed Tomography. Diagnostics, 12(2), 285. https://doi.org/10.3390/diagnostics12020285.

Downloads

Published

2025-09-01

How to Cite

Iggan, S. H. R., Muhamad Subra, M. N., Ramli, N. A., & Md Dasor, M. (2025). Orthodontic Mini Implant, a Narrative Review. Compendium of Oral Science, 12(2), 32–51. https://doi.org/10.24191/cos.v12i2.8826