Effect of Nano SiO2 Treatment on Surface Roughness of Modified Acetal and Polyamide Thermoplastic Partial Denture Clasp Materials
DOI:
https://doi.org/10.24191/cos.v12i2.8841Keywords:
nano sio2 coating, thermoplastic partial denture clasp, materials, non-touch profilometer surface, texture, surface roughnessAbstract
Objectives: This in-vitro study aimed to investigate the effect of nano SiO2 coating on the surface roughness of E. glass fibres reinforced acetal and polyamide thermoplastic resin partial denture clasp materials. Materials and methods: 144 thermoplastic disk specimens were fabricated using two material groups, acetal (n=72) and polyamide (n=72). Each of these two material groups was further divided into three subgroups (n=24/subgroup), namely 1: unmodified (control), 2: internally E. glass fibres reinforced, and 3: externally nano SiO2 coated with internally E. glass fibres reinforced. Alicona non-touch profilometer was used to measure the surface roughness of all test specimens. Results: Control and E. glass fibres reinforced of acetal and polyamide resin subgroups showed the highest mean surface roughness; (Ra= 0.181 μm, 0.111μm) respectively. In the third subgroup, the acetal resin showed slightly higher surface roughness than the polyamide resin group; (Ra= 0.1114μm, 0.1113μm) respectively at (P=0.838). Conclusion: Utilization of nano SiO2 coating on acetal and polyamide thermoplastic partial denture clasp materials can significantly enhance their surface properties, resulting in improved surface roughness. This novel technique stands as a promising external approach for ameliorating the performance of these materials.
References
AlBin‐Ameer, M. A., Alsrheed, M. Y., Aldukhi, I. A., Matin, A., Khan, S. Q., Abualsaud, R., & Gad, M. M. (2020). Effect of protective coating on surface properties and Candida albicans adhesion to denture base materials. Journal of Prosthodontics, 29(1), 80-86. https://doi.org/10.1111/jopr.13118.
Azuma, A., Akiba, N., & Minakuchi, S. (2012). Hydrophilic surface modification of acrylic denture base material by silica coating and its influence on Candida albicans adherence. Journal of medical and dental sciences, 59(1), 1-7.
Barbosa, S. H., Zanata, R. L., Navarro, M. F. d. L., & Nunes, O. B. (2005). Effect of different finishing and polishing techniques on the surface roughness of microfilled, hybrid and packable composite resins. Brazilian Dental Journal, 16(1), 39-44. https://doi.org/10.1590/s0103-64402005000100007.
Bollenl, C. M., Lambrechts, P., & Quirynen, M. (1997). Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dental materials, 13(4), 258-269. https://doi.org/10.1016/s0109-5641(97)80038-3.
Chantarachindawong, R., Luangtip, W., Chindaudom, P., Osotchan, T., & Srikhirin, T. (2012). Development of the scratch resistance on acrylic sheet with basic colloidal silica (SiO2)—methyltrimethoxysilane (MTMS) nanocomposite films by sol–gel technique. The Canadian Journal of Chemical Engineering, 90(4), 888-896. https://doi.org/10.1002/cjce.21631.
Chuchulska, B., Hristov, I., Dochev, B., & Raychev, R. (2022). Changes in the Surface Texture of Thermoplastic (Monomer-Free) Dental Materials Due to Some Minor Alterations in the Laboratory Protocol—Preliminary Study. Materials, 15(19), 6633. https://doi.org/10.3390/ma15196633.
Gad, M. M., Bahgat, H. A., Edrees, M. F., Alhumaidan, A., Khan, S. Q., & Ayad, N. M. (2022). Antifungal activities and some surface characteristics of denture soft liners containing silicon dioxide nanoparticles. Journal of International Society of Preventive & Community Dentistry, 12(1), 109-116. https://doi.org/10.4103/jispcd.JISPCD_286_21.
Jang, D.-E., Lee, J.-Y., Jang, H.-S., Lee, J.-J., & Son, M.-K. (2015). Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture. The journal of advanced prosthodontics, 7(4), 278-287. https://doi.org/10.4047/jap.2015.7.4.278.
Kamonwanon, P., Hirose, N., Yamaguchi, S., Sasaki, J.-i., Kitagawa, H., Kitagawa, R., Thaweboon, S., Srikhirin, T., & Imazato, S. (2017). SiO2-nanocomposite film coating of CAD/CAM composite resin blocks improves surface hardness and reduces susceptibility to bacterial adhesion. Dental materials journal, 36(1), 88-94. https://doi.org/10.4012/dmj.2016-135.
Kovoor, K. L., & Attavar, S. H. (2023). Comparative evaluation of the surface roughness of a microhybrid and nanohybrid composites using various polishing system: A profilometric analysis. Journal of International Oral Health, 15(4), 372.
Kuhar, M., & Funduk, N. (2005). Effects of polishing techniques on the surface roughness of acrylic denture base resins. The Journal of prosthetic dentistry, 93(1), 76-85. https://doi.org/10.1016/j.prosdent.2004.10.002.
Kumavat, V., Raghvendra, S. S., Vyavahare, N., Khare, U., & Kotadia, P. (2016). Effect of alcoholic and non-alcoholic beverages on color stability, surface roughness and fracture toughness of resin composites: an in vitro study. IIOAB J, 7(6), 48-54.
Latif, N. A., Kasolang, S., Ahmad, M., & Bakar, M. (2019). Effect of oleophilicity on Pistia inspired surface roughness. Journal of Mechanical Engineering, 8(1), 105-116.
Maleki Dizaj, S., Torab, A., Kouhkani, S., Sharifi, S., Negahdari, R., Bohlouli, S., Fattahi, S., & Salatin, S. (2023). Gelatin–Curcumin Nanocomposites as a Coating for Implant Healing Abutment: In Vitro Stability Investigation. Clinics and Practice, 13(1), 88-101. https://doi.org/10.3390/clinpract13010009.
Matinlinna, J. P., & Lassila, L. V. (2011). Enhanced resin-composite bonding to zirconia framework after pretreatment with selected silane monomers. Dental materials, 27(3), 273-280. https://doi.org/10.1016/j.dental.2010.11.002.
Matinlinna, J. P., Lung, C. Y. K., & Tsoi, J. K. H. (2018). Silane adhesion mechanism in dental applications and surface treatments: A review. Dental materials, 34(1), 13-28. https://doi.org/10.1016/j.dental.2017.09.002.
Mekkawy, M. A., Hussein, L. A., & Alsharawy, M. A. (2015). Comparative study of surface roughness between polyamide, thermoplastic polymethyl methacrylate and acetal resins flexible denture base materials before and after polishing. Life Science Journal, 12(10), 90-95.
Moffa, J. P., Jenkins, W. A., & Weaver, R. G. (1975). Silane bonding of porcelain denture teeth to acrylic resin denture bases. The Journal of prosthetic dentistry, 33(6), 620-627. https://doi.org/10.1016/s0022-3913(75)80123-5.
Nagakura, M., Tanimoto, Y., & Nishiyama, N. (2017). Fabrication and physical properties of glass‐fiber‐reinforced thermoplastics for non‐metal‐clasp dentures. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(8), 2254-2260. https://doi.org/10.1002/jbm.b.33761.
Ng, Y. H., Dasari, A., Tan, K. H., & Qian, L. (2021). Intumescent fire-retardant acrylic coatings: Effects of additive loading ratio and scale of testing. Progress in Organic Coatings, 150, 105985. https://doi.org/10.1016/j.porgcoat.2020.105985.
Nihei, T., Dabanoglu, A., Teranaka, T., Kurata, S., Ohashi, K., Kondo, Y., Yoshino, N., Hickel, R., & Kunzelmann, K.-H. (2008). Three-body-wear resistance of the experimental composites containing filler treated with hydrophobic silane coupling agents. Dental materials, 24(6), 760-764. https://doi.org/10.1016/j.dental.2007.09.001.
Özcan, M. (2002). The use of chairside silica coating for different dental applications: a clinical report. The Journal of prosthetic dentistry, 87(5), 469-472. https://doi.org/10.1067/mpr.2002.124365.
Park, J.-W., An, J.-S., Lim, W. H., Lim, B.-S., & Ahn, S.-J. (2019). Microbial changes in biofilms on composite resins with different surface roughness: An in vitro study with a multispecies biofilm model. The Journal of prosthetic dentistry, 122(5), 493. e491-493. e498. https://doi.org/10.1016/j.prosdent.2019.08.009.
Patel, D. R., & Kiran, M. (2020). A non-contact approach for surface roughness prediction in CNC turning using a linear regression model. Materials Today: Proceedings, 26, 350-355. https://doi.org/10.1016/j.matpr.2019.12.029.
Rapone, B., Pedone, S., Carnevale, A., Plantamura, P., Scarano, A., Demelio, A., Demelio, G. P., & Corsalini, M. (2022). Profilometer comparison of the surface roughness of four denture base resins: An In Vitro study. Applied Sciences, 12(4), 1837. https://doi.org/10.3390/app12041837.
S El-Din, M., Badr, A. M., Agamy, E. M., & Mohamed, G. F. (2018). Effect of two polishing techniques on surface roughness of three different denture base materials (an in vitro study). Alexandria Dental Journal, 43(3), 34-40. https://doi.org/10.21608/adjalexu.2018.57990.
Soares, I. A., Leite, P. K. B. d. S., Farias, O. R., Lemos, G. A., Batista, A. U. D., & Montenegro, R. V. (2019). Polishing methods' influence on color stability and roughness of 2 provisional prosthodontic materials. Journal of Prosthodontics, 28(5), 564-571. https://doi.org/10.1111/jopr.13062.
Song, S.-Y., Kim, K.-S., Lee, J.-Y., & Shin, S.-W. (2019). Physical properties and color stability of injection-molded thermoplastic denture base resins. The journal of advanced prosthodontics, 11(1), 32-40. https://doi.org/10.4047/jap.2019.11.1.32.
Takabayashi, Y. (2010). Characteristics of denture thermoplastic resins for non-metal clasp dentures. Dental materials journal, 29(4), 353-361. https://doi.org/10.4012/dmj.2009-114.
Tanimoto, Y., & Nagakura, M. (2018). Effects of polishing on surface roughness and hardness of glass-fiber-reinforced polypropylene. Dental materials journal, 37(6), 1017-1022. https://doi.org/10.4012/dmj.2018-012.
Wang, L., Zhao, W., & Tan, W. (2008). Bioconjugated silica nanoparticles: development and applications. Nano Research, 1, 99-115.
Yodmongkol, S., Chantarachindawong, R., Thaweboon, S., Thaweboon, B., Amornsakchai, T., & Srikhirin, T. (2014). The effects of silane-SiO2 nanocomposite films on Candida albicans adhesion and the surface and physical properties of acrylic resin denture base material. The Journal of prosthetic dentistry, 112(6), 1530-1538. https://doi.org/10.1016/j.prosdent.2014.06.019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Compendium of Oral Science

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Materials contained in the journal may be reproduced for educational purposes provided that both the author(s) and the journal are appropriately recognised; otherwise duplication is not permitted. No articles, reports, or portions there of may be translated into other languages, published in books, journals, magazines, or any other print form without written permission from the authors and from the journal.
Disclaimer: The statements, opinions and data expressed in the articles and reports herein are those of the author(s) and not of the publisher and the editor(s). The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any schemes, methods, instructions or ideas referred to in the content.








