

Journal of Mathematics and Computing Science, 2024,

Volume 10, No 1, 14-25

eISSN 0128-0767 14

Comparison of Some Numerical Methods for Solving Real-Life Nonlinear Equations by

Using Python Programming

Annie Gorgey1*, Zul Hafiezy Zulkifly2, Haslinah Hassim3 and Farah Adilla Azim4

1,2,3,4Department of Mathematics, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjung

Malim, Perak, Malaysia

Authors’ email: annie_gorgey@fsmt.upsi.edu.my*, d095689@siswa.upsi.edu.my, d095668@siswa.upsi.edu.my and

d095688@siswa.upsi.edu.my

*Corresponding author

Received 10 May 2024; Received in revised 5 June 2024; Accepted 20 June 2024

Available online 30 June 2024

Abstract: This research evaluates the efficiency and accuracy of some iterative methods for solving

scalar nonlinear equations. The study focuses on four types of iterative methods, such as Newton-

Raphson, Bisection, Secant, and Algorithm 1, a novel fourth-order and derivative-free root-finding

algorithm exhibiting different convergence orders. The accuracy of these methods is tested

numerically on some real-life nonlinear equations such as the fluid permeability problem, the blood

rheology model, Van Der Wall’s and Planck’s radiation laws, and lastly, the beam design problem.

Numerical experiments are conducted using the Python programming language with a tolerance of

10-14 and 10-15. The results indicate that the Secant method requires fewer iterations and CPU time

if compared with Newton-Raphson, Bisection and Algorithm 1 in solving fluid permeability problems,

blood rheology models, and Van Der Wall’s problems. The bisection method converges quickly

compared with other methods for solving Planck’s radiation law, while Algorithm 1 converges quicker

than other methods for solving the beam design problem. In terms of accuracy, the Secant method

gives greater accuracy in solving fluid permeability and Van Der Wall’s problems. Meanwhile, for

the blood rheology model, Newton Raphson's methods overcome other methods. On the other hand,

the Bisection method gives greater accuracy for Planck’s radiation law and beam design problems.

Algorithm 1 performance showed effective convergence to the root, but, in many cases, it encounters

a division by zero issue. The study suggests extending investigations to Algorithm 1 refinement,

comparative studies on various equation types, exploration of hybrid methods, real-world application

and validation, and user-friendly implementation.

Keywords: Algorithm 1, Bisection, Newton-Raphson, Numerical Methods, Python, Secant

1 Introduction

Scalar nonlinear equations are fundamental in various scientific and engineering applications due to

their ability to model complex behaviour and systems. There are many applications involving scalar,

nonlinear equations. In physics and engineering problems, the applications involved are heat transfer

and fluid dynamics. Scalar nonlinear equations are used to model heat conduction and transfer in various

materials and systems. The nonlinear heat conduction equation helps predict temperature distribution

over time and space in engineering systems such as reactors, engines, and buildings [1]. Meanwhile, in

the study of fluid dynamics, nonlinear equations describe the flow of incompressible fluids, including

phenomena like turbulence and boundary layer behaviour. The Navier-Stokes equation, although

typically a system of equations, has scalar nonlinear counterparts for specific simplified scenarios [7,3].

This research focuses on comparing different numerical methods for solving nonlinear equations,

which are crucial in various scientific and engineering fields [1]. The study aims to identify the most

efficient iterative method by numerically investigating the basic iterative methods, which are Newton-

about:blank
about:blank
mailto:d095689@siswa.upsi.edu.my
mailto:d095668@siswa.upsi.edu.my
mailto:d095688@siswa.upsi.edu.my

Comparison Of Some Numerical Methods for Solving Real-Life Nonlinear Equations by Using Python Programming

15

Raphson (NR), Secant, and Bisection, including Algorithm 1, which was newly proposed by the

previous researchers [7]. The selected methods are implemented using Python, a versatile platform for

scientific computing [2]. The performance of each method is evaluated based on metrics such as CPU

time, number of iterations, and absolute error of approximations. The findings will contribute to the

existing knowledge of numerical methods for solving nonlinear equations, providing valuable insights

for practitioners and researchers [3].

2 Methodology

A Newton-Raphson Method

The Newton-Raphson (NR) method is an iterative technique commonly used to approximate the roots

of a nonlinear equation. It relies on the idea of linearising the equation by employing the tangent line at

an initial guess and iteratively refining the estimate until a satisfactory approximation to the root is

obtained. Graphically, the NR method involves finding the intersection point between the tangent line

and the x-axis, which represents an improved approximation to the root. Starting with an initial guess,

the tangent line is drawn, and its intersection with the x-axis is determined. This process is repeated

iteratively until a desired level of accuracy is achieved. The iteration scheme for the NR method can be

summarised as follows [4]:

1. Start with an initial guess, 𝑥0, for the root of the equation.

2. Compute the function value, 𝑓(𝑥0), and the derivative value, 𝑓′(𝑥0), at the initial guess.

3. Calculate the next approximation, 𝑥1, using the formula:

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
. (1)

4. Repeat steps 2 and 3 iteratively until the desired level of accuracy is achieved or a

predetermined number of iterations is reached.

The iteration scheme exploits the fact that the tangent line to the function at a given point provides

a good approximation to the behaviour of the function near that point. By iteratively updating the

approximation using the tangent line, the method converges towards the root. The NR method has order-

2 accuracy.

B Secant Method

The Secant method (SM) is an iterative numerical technique used to approximate the roots of a nonlinear

equation. Unlike the NR method, it does not require the evaluation of derivatives. Instead, it estimates

the slope of the function using a finite difference approximation. Graphically, the Secant method

approximates the root of an equation by drawing a straight line through two initial guesses and finding

the intersection point of the line with the x-axis. This intersection point serves as a new approximation

to the root. The process is repeated iteratively, with each new line being drawn using the previous two

approximations until the desired level of accuracy is achieved. The iteration scheme for the Secant

method can be summarised as follows [5]:

1. Start with two initial guesses, 𝑥0 and 𝑥1, for the root of the equation.

2. Calculate the function values, 𝑓(𝑥0) and 𝑓(𝑥1).

3. Approximate the slope of the function using the finite difference approximation:

Slope (𝑚) =
(𝑓(𝑥1) − 𝑓(𝑥0))

(𝑥1 − 𝑥0)
 (2)

4. Compute the next approximation, 𝑥2, using the formula:

Annie Gorgey

16

𝑥2 = 𝑥1 −
𝑓(𝑥1)

𝑚
 (3)

5. Update the values of 𝑥0 and 𝑥1 as 𝑥1 and 𝑥2, respectively.

6. Repeat steps 2–5 iteratively until the desired level of accuracy is achieved.

The iteration scheme adapts the slope estimation based on the previous two approximations,

gradually refining the approximation to the root.

C Bisection Method

The Bisection method (BM) is a numerical technique used to approximate the roots of a nonlinear

equation. It relies on the principle of repeatedly bisecting an interval that contains a root until a desired

level of accuracy is achieved. Graphically, the Bisection method involves dividing an interval that

contains a root into two equal subintervals and identifying which subinterval the root lies within. The

process is iteratively applied to the subinterval that contains the root until a desired level of accuracy is

reached. The method exploits the intermediate value theorem, which guarantees the existence of a root

within an interval if the function values at the endpoints have opposite signs. The iteration scheme for

the Bisection method can be summarised as follows [6]:

1. Start with an interval [𝑎, 𝑏] that contains a root of the equation, where 𝑓(𝑎) and 𝑓(𝑏) have

opposite signs.

2. Calculate the midpoint c of the interval:

𝑐 =
(𝑎 + 𝑏)

2
 (4)

3. Evaluate the function value 𝑓(𝑐).

4. If 𝑓(𝑐) is sufficiently close to zero or the interval width is below a predetermined tolerance,

stop and return c as the approximated root.

5. Otherwise, determine which subinterval [𝑎, 𝑐] or [𝑐, 𝑏] contains a root based on the sign of

𝑓(𝑐).

6. Update the interval by setting either 𝑎 or 𝑏 to 𝑐, depending on which subinterval contains the

root.

7. Repeat steps 2–6 iteratively until the desired level of accuracy is achieved.

The iteration scheme bisects the interval at each step, narrowing down the search space for the

root. By iteratively refining the interval, the method converges towards the root.

D Algorithm 1 by Naseem et al. [7]

The Algorithm 1 method (A1M) is a newly designed algorithm developed by Naseem et al. [7] for

solving nonlinear equations. They designed a novel fourth-order and derivative-free root-finding

algorithm by applying the finite difference scheme to the well-known Ostrowski method. This method

offers a unique approach to finding the roots of nonlinear equations and has shown promising results in

various real-life applications. The graphical description of the Algorithm 1 method involves analysing

the behaviour of the function and its dynamics via computer tools. Algorithm 1 offers a novel

perspective on solving nonlinear equations. The iteration scheme for the Algorithm 1 method can be

summarised as follows:

1. Start with an initial guess, 𝑢0, for the root of the equation 𝜓(𝑢) = 0.

2. Compute the predictor, 𝑣𝑖, using the formula:

Comparison Of Some Numerical Methods for Solving Real-Life Nonlinear Equations by Using Python Programming

17

𝑣𝑖 = 𝑢𝑖 −
𝜓(𝑢𝑖)

𝜓′(𝑢𝑖)
 (5)

3. Compute the intermediate point, 𝑤𝑖, using the formula:

𝑤𝑖 = 𝑣𝑖 −
𝜓(𝑣𝑖)

 𝜓′(𝑣𝑖)
. (6)

4. Compute the next approximation, 𝑢𝑖+1, using the formula:

𝑢𝑖+1 = 𝑤𝑖 −
[𝜓(𝑤𝑖)𝜓(𝑣𝑖)]

[𝜓′(𝑣𝑖)𝜓(𝑣𝑖) − 2𝜓(𝑤𝑖)]
. (7)

5. Repeat steps 2–4 until the desired convergence is achieved or the maximum number of

iterations is reached.

E Real-Life Nonlinear Equations

The nonlinear equations selected for experimentation represent diverse real-world problems, each

posing unique challenges for numerical methods. The following examples elucidate the nature of these

equations.

i. Equation 1: Fluid Permeability Problem

In the field of fluid dynamics, the concept of hydraulic permeability is important [8]. This parameter

quantifies the ease with which a fluid can traverse through a porous medium. The mathematical

representation of this concept is given by the equation:

𝜅 =
𝑟𝑒𝑢3

20(1−𝑢)2 (8)

where κ denotes the specific hydraulic permeability, 𝑟𝑒 represents the radius of the pores, and 𝑢

is the porosity, defined as the fraction of the volume of the material that is occupied by pores. The

porosity value lies within the range of 0 to 1 [7]. An additional equation:

𝑟𝑒𝑢3 − 20𝑘(1 − 𝑢)2 = 0, (9)

is also presented, which may be a rearranged form, or a related equation used in the computation

process.

A specific instance of this concept is explored where the radius 𝑟𝑒 is 100 and the specific hydraulic

permeability 𝑘 is 0.4655. Substituting these values into the equation results in a new nonlinear function:

𝜓1(𝑢) = 100𝑢3 − 9.31(1 − 𝑢)2 (10)

The solution 𝜓1 is obtained through an iterative process, which involves making an initial guess

for u (in this case, 𝑢0 = 1.0) with a tolerance 10−15 for the [0.30 , 0.35] interval and then repeatedly

applying a method to refine this guess until the true solution is reached.

ii. Equation 2: Blood Rheology Model

Blood rheology, a specialised field within the scientific community, focuses on the study of the physical

and flow properties of blood [9]. Blood is characterised as a non-Newtonian fluid and is often modelled

Annie Gorgey

18

as a Caisson fluid [10]. The Caisson fluid model elucidates those simple fluids in a tube flow in such a

manner that the central core of the fluid moves akin to a plug with minimal deformation, and the velocity

gradient is predominantly observed near the wall [7]. To analyse the plug flow of Caisson fluids, we

consider the following nonlinear equation:

𝐻 = 1 −
16

7
√𝑢 +

4

3
𝑢 −

1

21
𝑢4, (11)

where H computes the reduction in flow rate. By substituting H=0.40 into equation (11), the following

nonlinear function is derived [11]:

𝜓2(𝑢) =
1

441
𝑢8 −

8

63
𝑢5 − 0.05714285714𝑢4 +

16

9
𝑢2 − 3.624489796𝑢 + 0.3. (12)

To solve for 𝜓2, an initial guess of 𝑢0 = 2.0 with tolerance of 10−15 for the [0.00 , 0.10] interval

is used to commence the iterative process.

iii. Equation 3: Van Der Wall’s Equation

Van Der Wall’s equation is a renowned mathematical model that provides a comprehensive

understanding of the behaviour of both real and ideal gases [12]. The equation is expressed as follows:

(𝑃 +
𝐶1𝑛2

𝑉2)(𝑉 − 𝑛𝐶2) = 𝑖𝑅𝑇 (13)

In this equation:

● 𝑃 denotes the pressure of the gas.

● 𝐶1 and 𝐶2 are constants.

● 𝑛 represents the number of moles of the gas.

● 𝑉 is the volume of the gas.

● 𝑖 signifies the number of degrees of freedom of the gas molecules.

● 𝑅 is the ideal gas constant.

● 𝑇 is the temperature of the gas.

By substituting specific values into this equation, it can be transformed into a nonlinear function [7]:

𝜓3(𝑢) = 0.986𝑢3 − 5.181𝑢2 + 9.067𝑢 − 5.289 (14)

In this equation, 𝑢 represents the volume of the gas. This equation is cubic, so it should have

three roots. However, only one of these roots is physically meaningful because the volume of a gas

cannot be negative. This root is approximately 1.9298462428.

To find this root, an iterative process is used. This involves starting with an initial guess 𝑢 (in

this case, 𝑢0 = 2.0) with tolerance of 10−14 for the [1.50 , 2.00] interval and then repeatedly applying

a method to refine this guess until the true solution is reached.

iv. Equation 4: Planck’s Radiation Law

The Law of Planck’s Radiation is a pivotal principle in quantum mechanics that provides a

comprehensive understanding of the energy density within a black isothermal body [13]. The equation

is expressed as follows:

𝜙(𝛾) =
8𝜋𝑃𝑐

𝛾5𝑒𝑃𝑐/𝛾𝑇𝑘−1
 (15)

Comparison Of Some Numerical Methods for Solving Real-Life Nonlinear Equations by Using Python Programming

19

In this equation:

● P denotes the pressure of the gas.

● c represents the speed of light.

● Tk is the temperature of the black body.

● γ is the wavelength

The objective is to compute the wavelength 𝛾1 at which the energy density 𝜙(𝛾1) reaches its

peak. To achieve this, equation (15) is transformed into the following nonlinear function [7]:

𝜓4(𝑢) = −1 +
𝑢

5
+ 𝑒−𝑢 (16)

In this equation, 𝑢 represents the wavelength. This equation is used to find the value of 𝑢 that

maximizes the energy density. One of the estimated roots of 𝜓4 is -0.00, which signifies the maximum

wavelength of the radiation.

To find this root, an iterative process is used. This involves starting with an initial guess for u (in

this case, 𝑢0 = 0.5) with a tolerance 10−15 for the [−1 , 1] interval and then repeatedly applying a

method to refine this guess until the true solution is reached.

v. Equation 5: Beam Designing Problem

The problem of beam design is a significant challenge in the fields of Physics and Engineering [14].

This problem pertains to the determination of the embedment, denoted as 𝑢, a sheet pile wall [15]. A

sheet pile wall is a structural element used in construction to retain soil or water. The embedment of the

wall is mathematically represented as a scalar nonlinear function:

𝜓5(𝑢) =
𝑢3+2.87𝑢2−4.62𝑢−10.28

4.62
 (17)

This equation 𝑢 represents the embedment of the sheet pile wall. This equation is used to find the

value 𝑢 that satisfies the conditions of the problem.

To find this value, an iterative process is used. This involves starting with an initial guess for 𝑢

(in this case, 𝑢0 = 1.0) with tolerance 10−14 for the [2.00 , 2.10] interval and then repeatedly applying

a method to refine this guess until the true solution is reached. The maximum number of iterations used

for all numerical experiments is 100.

3 Results and Discussion

The analysis of the numerical experiments reveals a nuanced perspective on the efficiency, accuracy

and reliability of different iterative methods applied to a variety of nonlinear equations. The discussion

is structured around the results obtained for each equation.

A The Most Efficient Method

In this section, we analyse the efficiency of the numerical methods based on the CPU time and iteration

numbers required to converge to a solution. The following results were obtained from the experiments.

Annie Gorgey

20

Table 1: Numerical Results based on computational time (Efficiency Table)

Equations NR BM SM A1M
1 0.3426482058114499

Iteration: 7

(0.0000000000 sec)

0.34264820581145017

Iteration: 45

(0.0000000000 sec)

0.3426482058114499

Iteration: 5

(0.0000000000 sec)

None

(Encounter division by

zero)
2 0.08643355805246679

Iteration: 7

(0.0000000000 sec)

0.08643355805246672

Iteration: 46

(0.0000000000 sec)

0.08643355805246677

Iteration: 5

(0.0000000000 sec)

None

(Encounter division by

zero)
3 None

Iteration: 100

(0.0000000000 sec)

None
Iteration: 100

(0.0000000000 sec)

1.9298462428478675
Iteration: 11

(0.0000000000 sec)

None
(Encounter division by

zero)
4 -1.16014740694848E-16

Iteration: 6

(0.0090053082 sec)

0.0
Iteration: 1

(0.0019958019 sec)

3.49819278439754E-17
Iteration: 10

(0.0080032349 sec)

-2.18542946146473E-
16

Iteration: 2

(0.0039973259 sec)
5 2.0021187789538275

Iteration: 7

(0.0000000000 sec)

2.0021187789538306
Iteration: 42

(0.0000000000 sec)

2.0021187789538266
Iteration: 4

(0.0000000000 sec)

2.002118778953827
Iteration: 3

(0.0000000000 sec)

The analysis reveals that, in terms of efficiency, the Secant method (SM) often exhibits superior

performance, requiring fewer iterations and CPU time to converge compared to the Newton-Raphson

(NR), Bisection (BM) and Algorithm 1(A1M) in solving Equations 1 to 3. Notably, the Bisection

methods provided rapid convergence for well-behaved functions, such as Equation 4, and Algorithm 1

converges quicker than other methods for Equation 5. Efficiency in terms of iterations is a crucial metric

for real-world applications, especially when computational resources are limited. However, it is

essential to note that the choice of the most efficient method may vary depending on the nature of the

function and the initial guess.

B The Most Accurate Method

In this section, we evaluate the accuracy of the numerical methods concerning the absolute value of the

roots obtained. The absolute values for each method in solving the equations are as follows:

Table 2: Numerical Results based on errors (Accuracy Table)

Equations NR BM SM A1M
1 1.1102230246251565e-16

Iteration: 7

(0.0000000000 sec)

1.6653345369377348e-16

Iteration: 45

(0.0000000000 sec)

1.1102230246251565e-16

Iteration: 5

(0.0000000000 sec)

(Encounter division by

zero)

2 1.3877787807814457e-17

Iteration: 7

(0.0000000000 sec)

8.326672684688674e-17

Iteration: 46

(0.0000000000 sec)

2.7755575615628914e-17

Iteration: 5

(0.0000000000 sec)

(Encounter division by

zero)

3 3.3084646133829665e-14
Iteration: 100

(0.0000000000 sec)

6.972200594645983e-14
Iteration: 100

(0.0000000000 sec)

7.549516567451064e-15

Iteration: 11

(0.0000000000 sec)

(Encounter division by
zero)

4 1.16014740694848e-16
Iteration: 6

(0.0090053082 sec)

0.0
Iteration: 1

(0.0019958019 sec)

3.49819278439754e-17
Iteration: 10

(0.0080032349 sec)

2.18542946146473e-16
Iteration: 2

(0.0039973259 sec)
5 2.6645352591003757e-15

Iteration: 7
(0.0000000000 sec)

4.440892098500626e-16

Iteration: 42
(0.0000000000 sec)

3.552713678800501e-15

Iteration: 4
(0.0000000000 sec)

3.1086244689504383e-

15
Iteration: 3

(0.0000000000 sec)

The absolute error analysis provides insight into the precision of each method in determining

the roots. Smaller absolute errors indicate greater accuracy. The second method gives greater

accuracy in solving Equations 1 and 3. Meanwhile, for Equation 2, the Newton-Raphson (NR)

method overcomes other methods. On the other hand, the Bisection method (BM) gives greater

accuracy for Equations 4 and 5. Algorithm 1 (A1M) performances showed effective convergence to

the root, but, in many cases, it encountered a division by zero issue. However, it is crucial to

acknowledge that the choice of the most accurate method depends on various factors, including the

characteristics of the function and the specific requirements of the application.

Comparison Of Some Numerical Methods for Solving Real-Life Nonlinear Equations by Using Python Programming

21

4 Python Coding

Below is the code of Python programming for the numerical experiment.

A Importing Libraries

import math

from prettytable import PrettyTable

import matplotlib.pyplot as plt

import numpy as np

from sympy import symbols, Eq, solve, exp, sqrt, sin, cos, tan

import time

B Defining the Function

x = symbols('x')

def f(x):

 return (x**3 + 2.87*x**2 - 4.62*x - 10.28)/4.62

C Solving the Equation Symbolically

equation = Eq(f(x), 0)

roots = solve(equation, x)

print("Roots found:", roots)

D Plotting the Function

x_vals = np.linspace(-5, 5, 1000)

f_numeric = np.vectorize(lambda x: float(f(x)))

y_vals = f_numeric(x_vals)

plt.plot(x_vals, y_vals)

plt.axhline(0, color='black', linestyle='--', linewidth=0.8)

plt.xlabel('x')

plt.ylabel('f(x)')

plt.title('Graph of the Function')

plt.grid(True)

plt.show()

E Calulating the Derivative of the Function

def df(x, epsilon=1e-6):

 return (f(x + epsilon) - f(x - epsilon)) / (2 * epsilon)

F Intermediate Value Theorem Check

def ivt_check(a, b):

 fa, fb = f(a), f(b)

 if fa * fb > 0:

 print("Bisection Root\t : IVT does not guarantee a root in the

interval. Choose a different interval.")

 return False

 return True

G Bisection Method

def bisection_auto(a, b, tolerance, max_iterations):

 B_iter = 0

 iterations = []

 if not ivt_check(a, b):

 return None, B_iter, iterations

 for i in range(max_iterations):

 c = (a + b) / 2

 B_iter += 1

 error = abs(c - desired_root)

 iterations.append((B_iter, c, f(c), error))

Annie Gorgey

22

 if error < tolerance:

 return c, B_iter, iterations

 if f(c) * f(a) < 0:

 b = c

 else:

 a = c

 return None, B_iter, iterations

H Newton-Raphson Method

def newton_raphson_auto(initial_guess, tolerance, max_iterations):

 x = initial_guess

 NR_iter = 0

 iterations = []

 for i in range(max_iterations):

 x = x - f(x) / df(x)

 NR_iter += 1

 error = abs(x-desired_root)

 iterations.append((NR_iter, x, f(x), error))

 if error < tolerance:

 return x, NR_iter, iterations

 return None, NR_iter, iterations

I Secant Method

def secant_auto(x0, x1, tolerance, max_iterations):

 S_iter = 0

 iterations = []

 for i in range(max_iterations):

 f_x0, f_x1 = f(x0), f(x1)

 denominator = f_x1 - f_x0

 # Check for zero in the denominator

 if denominator == 0:

 print("\nSecant Method\t : Division by zero encountered. Cannot

continue.")

 return None, S_iter, iterations

 x2 = x1 - (f_x1 * (x1 - x0)) / denominator

 S_iter += 1

 error = abs(x2 - desired_root)

 iterations.append((S_iter, x2, f(x2), error))

 if error < tolerance:

 return x2, S_iter, iterations

 x0, x1 = x1, x2

 return None, S_iter, iterations

J Algorithm 1 Method

def algorithm1_auto(initial_guess, max_iterations, tolerance):

 al_iter = 0

 x = initial_guess

 iterations = []

 for i in range(max_iterations):

 vi = x - f(x) / df(x)

 wi = vi - f(vi) / df(vi)

 # Check if the denominator is zero

 denominator = df(vi) * (f(vi) - 2 * f(wi))

 if denominator == 0:

 print("\nAlgorithm1 Root\t : Division by zero encountered.

Cannot continue.")

 return None, al_iter, iterations

 x_plus_1 = wi - (f(wi) * f(vi)) / denominator

 x = x_plus_1

 al_iter += 1

Comparison Of Some Numerical Methods for Solving Real-Life Nonlinear Equations by Using Python Programming

23

 error = abs(x - desired_root)

 iterations.append((al_iter, x, f(x), error))

 if error < tolerance:

 return x, al_iter, iterations

 return None, al_iter, iterations

K Printing Iteration Results

def print_iterations_table(iterations, method_name):

 table = PrettyTable()

 table.field_names = ["Iteration", "Root", f"{method_name} f(Root)",

"Absolute Error"]

 table.add_rows(iterations)

 print(f"\n{method_name} Iterations:")

 print(table)

if __name__ == "__main__":

 initial_guess = float(input("Enter the initial guess: "))

 tolerance = float(input("Enter the tolerance: "))

 max_iterations = int(input("Enter the maximum number of iterations: "))

 ivt_a = float(input("Enter the lower bound for IVT (ivt_a): "))

 ivt_b = float(input("Enter the upper bound for IVT (ivt_b): "))

 desired_root = float(input("Enter the desired exact root: "))

 start_newton_raphson = time.time()

 root_newton_auto, NR_iter, iterations_newton =

newton_raphson_auto(initial_guess, tolerance, max_iterations)

 end_newton_raphson = time.time()

 start_bisection = time.time()

 root_bisection_auto, B_iter, iterations_bisection = bisection_auto(ivt_a,

ivt_b, tolerance, max_iterations)

 end_bisection = time.time()

 start_secant = time.time()

 root_secant_auto, S_iter, iterations_secant = secant_auto(ivt_a, ivt_b,

tolerance, max_iterations)

 end_secant = time.time()

 start_algorithm1 = time.time()

 root_algorithm1_auto, al_iter, iterations_algorithm1 =

algorithm1_auto(initial_guess, max_iterations, tolerance)

 end_algorithm1 = time.time()

 print("\n--------------ITERATIONS-----------------\n")

 print_iterations_table(iterations_newton, "Newton-Raphson")

 if ivt_check(ivt_a, ivt_b):

 print_iterations_table(iterations_bisection, "Bisection")

 else:

 print("Bisection Root\t : IVT does not guarantee a root in the

interval. Choose a different interval.")

 print_iterations_table(iterations_secant, "Secant")

 print_iterations_table(iterations_algorithm1, "Algorithm1")

 print("\n--------------RESULTS-----------------\n")

 print(f"Newton-Raphson Root: {root_newton_auto} \t(Iterations: {NR_iter},

Time: {end_newton_raphson - start_newton_raphson:.10f} seconds)")

 if ivt_check(ivt_a, ivt_b):

 print(f"Bisection Root\t : {root_bisection_auto} \t(Iterations:

{B_iter}, Time: {end_bisection - start_bisection:.10f} seconds)")

 print(f"Secant Root\t : {root_secant_auto} \t(Iterations: {S_iter},

Time: {end_secant - start_secant:.10f} seconds)")

Annie Gorgey

24

 print(f"Algorithm1 Root\t : {root_algorithm1_auto} \t\t(Iterations:

{al_iter}, Time: {end_algorithm1 - start_algorithm1:.10f} seconds)")

 print("\n----------------END-------------------\n")

5 Conclusion

This research embarked on a comprehensive exploration of numerical methods, including Newton-

Raphson, Bisection, Secant, and Algorithm 1, to solve nonlinear equations representing diverse real-

world problems. The study revealed the behaviour of each method across varied problem domains. The

results indicate that the Secant method requires fewer iterations and CPU time if compared to Newton-

Raphson, Bisection and Algorithm 1 in solving Equation 1. For Equation 4, the Bisection method

converges quickly compared with other methods, and for Equation 5, Algorithm 1 converges quicker

than other methods. In terms of accuracy, the Secant method gives greater accuracy in solving Equations

1 and 3. Meanwhile, for Equation 2, the Newton-Raphson method overcomes other methods. On the

other hand, the Bisection method gives greater accuracy for Equations 4 and 5. Algorithm 1's

performance showed effective convergence to the root, but, in many cases, it encounters a division by

zero issue. The research contributes to the practical understanding of solving nonlinear equations and

the academic dialogue surrounding numerical methods. It also opens avenues for further refinement and

exploration of Algorithm 1. The study concludes with recommendations for future research,

emphasising algorithmic refinement, exploration of hybrid methods, real-world applications, and the

importance of user-friendly implementations. The research journey encapsulates the essence of

scientific exploration and the symbiosis between theory and computation.

Acknowledgements

The authors would like to express gratitude to Universiti Pendidikan Sultan Idris and the Research

Management and Innovation Centre (RMIC) for providing a GPUF research grant (2021-0215-103-01)

that enables the team to complete some parts of the research objectives through this article.

References

[1] S. R. Vadyala, S. N. Betgeri, J. C. Matthews, and E. Matthews, “A review of physics-based

machine learning in civil engineering,” Results Eng., vol. 13, no. 100316, 2022.

[2] A. Lavanya et al., “Assessing the performance of python data visualization libraries: a review,”

Int J Comput Eng Res Trends, vol. 10, no. 1, pp. 29–39, 2023.

[3] F. Yu, L. Liu, L. Xiao, K. Li, and S. Cai, “A robust and fixed-time zeroing neural dynamics for

computing time-variant nonlinear equation using a novel nonlinear activation function,”

Neurocomputing, vol. 350, pp. 108–116, 2029.

[4] S. Akram and Q. U. Ann, “Newton raphson method,” Int. J. Sci. Eng. Res., vol. 6, no. 7, pp.

1748–1752, 2015.

[5] I. K. Argyros and S. K. Khattri, “On the Secant method,” J. Complex., vol. 29, no. 6, pp. 454–

471, 2013.

[6] C. Solanki, P. Thapliyal, and K. Tomar, “Role of bisection method,” Int. J. Comput. Appl.

Technol. Res., vol. 3, no. 8, pp. 535–535, 2014.

[7] A. Naseem, M. A. Rehman, J. Younis, and V. T. Pham, “Some Real-Life Applications of a

Newly Designed Algorithm for Nonlinear Equations and Its Dynamics via Computer Tools,”

Complexity, vol. 2021, pp. 1–9, 2021.

[8] S. G. Solazzi, J. G. Rubino, D. Jougnot, and K. Holliger, “Dynamic permeability functions for

partially saturated porous media,” Geophys. J. Int., vol. 221, no. 2, pp. 1182–1189, 2020.

[9] J. S. Horner, An experimental and theoretical investigation of blood rheology. University of

Delaware, 2020.

Comparison Of Some Numerical Methods for Solving Real-Life Nonlinear Equations by Using Python Programming

25

[10] J. S. Tulshiram, “A Study of Free Convection Flow of a Chemically Reacting Fluid,” 2023.

[11] S. Qureshi, A. Soomro, A. A. Shaikh, E. Hincal, and N. Gokbulut, “A novel multistep iterative

technique for models in medical sciences with complex dynamics,” Comput. Math. Methods

Med., vol. 2022, no. 1, p. 7656451, 2022.

[12] C. Della Volpe and S. Siboni, “From van der Waals equation to acid-base theory of surfaces: a

chemical-mathematical journey,” Rev. Adhes. Adhes., vol. 47–97, no. 1, pp. 47–97, 2022.

[13] H. J. Geesink, “Evidence for a quantum distribution of Planck’s black-body radiation law,”

2023.

[14] J. Chen, S. Hu, S. Zhu, and T. Li, “Metamaterials: from fundamental physics to intelligent

design,” Interdiscip. Mater., vol. 2, no. 1, pp. 5–29, 2023.

[15] J. L. Wilt, Design of Bending Moment and Load Capacity Test for FRP Sheet Piles. West

Virginia University, 2021.

