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Abstract: This research evaluates the efficiency and accuracy of some iterative methods for solving 

scalar nonlinear equations. The study focuses on four types of iterative methods, such as Newton-

Raphson, Bisection, Secant, and Algorithm 1, a novel fourth-order and derivative-free root-finding 

algorithm exhibiting different convergence orders. The accuracy of these methods is tested 

numerically on some real-life nonlinear equations such as the fluid permeability problem, the blood 

rheology model, Van Der Wall’s and Planck’s radiation laws, and lastly, the beam design problem. 

Numerical experiments are conducted using the Python programming language with a tolerance of 

10-14 and 10-15. The results indicate that the Secant method requires fewer iterations and CPU time 

if compared with Newton-Raphson, Bisection and Algorithm 1 in solving fluid permeability problems, 

blood rheology models, and Van Der Wall’s problems. The bisection method converges quickly 

compared with other methods for solving Planck’s radiation law, while Algorithm 1 converges quicker 

than other methods for solving the beam design problem. In terms of accuracy, the Secant method 

gives greater accuracy in solving fluid permeability and Van Der Wall’s problems. Meanwhile, for 

the blood rheology model, Newton Raphson's methods overcome other methods. On the other hand, 

the Bisection method gives greater accuracy for Planck’s radiation law and beam design problems. 

Algorithm 1 performance showed effective convergence to the root, but, in many cases, it encounters 

a division by zero issue. The study suggests extending investigations to Algorithm 1 refinement, 

comparative studies on various equation types, exploration of hybrid methods, real-world application 

and validation, and user-friendly implementation.  

 

Keywords: Algorithm 1, Bisection, Newton-Raphson, Numerical Methods, Python, Secant  
 

 

 

1 Introduction 

 

Scalar nonlinear equations are fundamental in various scientific and engineering applications due to 

their ability to model complex behaviour and systems. There are many applications involving scalar, 

nonlinear equations. In physics and engineering problems, the applications involved are heat transfer 

and fluid dynamics. Scalar nonlinear equations are used to model heat conduction and transfer in various 

materials and systems. The nonlinear heat conduction equation helps predict temperature distribution 

over time and space in engineering systems such as reactors, engines, and buildings [1]. Meanwhile, in 

the study of fluid dynamics, nonlinear equations describe the flow of incompressible fluids, including 

phenomena like turbulence and boundary layer behaviour. The Navier-Stokes equation, although 

typically a system of equations, has scalar nonlinear counterparts for specific simplified scenarios [7,3]. 

 

This research focuses on comparing different numerical methods for solving nonlinear equations, 

which are crucial in various scientific and engineering fields [1]. The study aims to identify the most 

efficient iterative method by numerically investigating the basic iterative methods, which are Newton-
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Raphson (NR), Secant, and Bisection, including Algorithm 1, which was newly proposed by the 

previous researchers [7]. The selected methods are implemented using Python, a versatile platform for 

scientific computing [2]. The performance of each method is evaluated based on metrics such as CPU 

time, number of iterations, and absolute error of approximations. The findings will contribute to the 

existing knowledge of numerical methods for solving nonlinear equations, providing valuable insights 

for practitioners and researchers [3]. 

 

 

2 Methodology 

 

A Newton-Raphson Method 

 

The Newton-Raphson (NR) method is an iterative technique commonly used to approximate the roots 

of a nonlinear equation. It relies on the idea of linearising the equation by employing the tangent line at 

an initial guess and iteratively refining the estimate until a satisfactory approximation to the root is 

obtained. Graphically, the NR method involves finding the intersection point between the tangent line 

and the x-axis, which represents an improved approximation to the root. Starting with an initial guess, 

the tangent line is drawn, and its intersection with the x-axis is determined. This process is repeated 

iteratively until a desired level of accuracy is achieved. The iteration scheme for the NR method can be 

summarised as follows [4]: 

 

1. Start with an initial guess, 𝑥0, for the root of the equation. 

2. Compute the function value, 𝑓(𝑥0), and the derivative value, 𝑓′(𝑥0), at the initial guess. 

3. Calculate the next approximation, 𝑥1, using the formula: 

 

𝑥1  =  𝑥0  −
𝑓(𝑥0)

𝑓′(𝑥0)
.     (1) 

 

4. Repeat steps 2 and 3 iteratively until the desired level of accuracy is achieved or a 

predetermined number of iterations is reached.  

 

The iteration scheme exploits the fact that the tangent line to the function at a given point provides 

a good approximation to the behaviour of the function near that point. By iteratively updating the 

approximation using the tangent line, the method converges towards the root. The NR method has order-

2 accuracy. 

  

B Secant Method 

 

The Secant method (SM) is an iterative numerical technique used to approximate the roots of a nonlinear 

equation. Unlike the NR method, it does not require the evaluation of derivatives. Instead, it estimates 

the slope of the function using a finite difference approximation. Graphically, the Secant method 

approximates the root of an equation by drawing a straight line through two initial guesses and finding 

the intersection point of the line with the x-axis. This intersection point serves as a new approximation 

to the root. The process is repeated iteratively, with each new line being drawn using the previous two 

approximations until the desired level of accuracy is achieved. The iteration scheme for the Secant 

method can be summarised as follows [5]: 

 

1. Start with two initial guesses, 𝑥0 and 𝑥1, for the root of the equation. 

2. Calculate the function values, 𝑓(𝑥0) and 𝑓(𝑥1). 

3. Approximate the slope of the function using the finite difference approximation: 

 

Slope (𝑚)  =  
(𝑓(𝑥1) − 𝑓(𝑥0))

(𝑥1 − 𝑥0)
     (2) 

 

4. Compute the next approximation, 𝑥2, using the formula: 
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𝑥2  =  𝑥1  − 
𝑓(𝑥1)

𝑚
         (3) 

 

5. Update the values of 𝑥0 and 𝑥1 as 𝑥1 and 𝑥2, respectively. 

6. Repeat steps 2–5 iteratively until the desired level of accuracy is achieved. 

 

The iteration scheme adapts the slope estimation based on the previous two approximations, 

gradually refining the approximation to the root. 

 

 

C Bisection Method 

 

The Bisection method (BM) is a numerical technique used to approximate the roots of a nonlinear 

equation. It relies on the principle of repeatedly bisecting an interval that contains a root until a desired 

level of accuracy is achieved. Graphically, the Bisection method involves dividing an interval that 

contains a root into two equal subintervals and identifying which subinterval the root lies within. The 

process is iteratively applied to the subinterval that contains the root until a desired level of accuracy is 

reached. The method exploits the intermediate value theorem, which guarantees the existence of a root 

within an interval if the function values at the endpoints have opposite signs. The iteration scheme for 

the Bisection method can be summarised as follows [6]: 

 

1. Start with an interval [𝑎, 𝑏] that contains a root of the equation, where 𝑓(𝑎) and 𝑓(𝑏) have 

opposite signs. 

2. Calculate the midpoint c of the interval:  

 

𝑐 =  
(𝑎 + 𝑏)

2
      (4) 

 

3. Evaluate the function value 𝑓(𝑐). 

4. If 𝑓(𝑐) is sufficiently close to zero or the interval width is below a predetermined tolerance, 

stop and return c as the approximated root. 

5. Otherwise, determine which subinterval  [𝑎, 𝑐] or [𝑐, 𝑏] contains a root based on the sign of 

𝑓(𝑐). 

6. Update the interval by setting either 𝑎 or 𝑏 to 𝑐, depending on which subinterval contains the 

root. 

7. Repeat steps 2–6 iteratively until the desired level of accuracy is achieved. 

 

The iteration scheme bisects the interval at each step, narrowing down the search space for the 

root. By iteratively refining the interval, the method converges towards the root. 

 

 

D Algorithm 1 by Naseem et al. [7] 

 

The Algorithm 1 method (A1M) is a newly designed algorithm developed by Naseem et al. [7] for 

solving nonlinear equations. They designed a novel fourth-order and derivative-free root-finding 

algorithm by applying the finite difference scheme to the well-known Ostrowski method. This method 

offers a unique approach to finding the roots of nonlinear equations and has shown promising results in 

various real-life applications. The graphical description of the Algorithm 1 method involves analysing 

the behaviour of the function and its dynamics via computer tools. Algorithm 1 offers a novel 

perspective on solving nonlinear equations. The iteration scheme for the Algorithm 1 method can be 

summarised as follows: 

 

1. Start with an initial guess, 𝑢0, for the root of the equation 𝜓(𝑢)  =  0. 

2. Compute the predictor, 𝑣𝑖, using the formula:  
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𝑣𝑖  =   𝑢𝑖  −  
𝜓(𝑢𝑖)

𝜓′(𝑢𝑖)
     (5) 

 

3. Compute the intermediate point, 𝑤𝑖, using the formula:  

𝑤𝑖  =  𝑣𝑖  −  
𝜓(𝑣𝑖)

 𝜓′(𝑣𝑖)
.     (6) 

 

4. Compute the next approximation, 𝑢𝑖+1, using the formula:  

 

𝑢𝑖+1  =  𝑤𝑖  −  
[𝜓(𝑤𝑖)𝜓(𝑣𝑖)]

[𝜓′(𝑣𝑖)𝜓(𝑣𝑖) − 2𝜓(𝑤𝑖)]
.    (7) 

 

5. Repeat steps 2–4 until the desired convergence is achieved or the maximum number of 

iterations is reached. 

 

 

E Real-Life Nonlinear Equations 

 

The nonlinear equations selected for experimentation represent diverse real-world problems, each 

posing unique challenges for numerical methods. The following examples elucidate the nature of these 

equations. 

 

i. Equation 1: Fluid Permeability Problem 

 

In the field of fluid dynamics, the concept of hydraulic permeability is important [8]. This parameter 

quantifies the ease with which a fluid can traverse through a porous medium. The mathematical 

representation of this concept is given by the equation: 

 

𝜅 =
𝑟𝑒𝑢3

20(1−𝑢)2     (8) 

 

where κ denotes the specific hydraulic permeability, 𝑟𝑒 represents the radius of the pores, and 𝑢 

is the porosity, defined as the fraction of the volume of the material that is occupied by pores. The 

porosity value lies within the range of 0 to 1 [7]. An additional equation: 

 

𝑟𝑒𝑢3 − 20𝑘(1 − 𝑢)2 = 0,        (9) 

 

is also presented, which may be a rearranged form, or a related equation used in the computation 

process. 

 

A specific instance of this concept is explored where the radius 𝑟𝑒 is 100 and the specific hydraulic 

permeability 𝑘 is 0.4655. Substituting these values into the equation results in a new nonlinear function: 

 

𝜓1(𝑢) = 100𝑢3 − 9.31(1 − 𝑢)2       (10) 

 

The solution 𝜓1 is obtained through an iterative process, which involves making an initial guess 

for u (in this case, 𝑢0 = 1.0) with a tolerance 10−15 for the [0.30 , 0.35] interval and then repeatedly 

applying a method to refine this guess until the true solution is reached. 

 

 

ii. Equation 2: Blood Rheology Model 

 

Blood rheology, a specialised field within the scientific community, focuses on the study of the physical 

and flow properties of blood [9]. Blood is characterised as a non-Newtonian fluid and is often modelled 



Annie Gorgey 

18 

 

as a Caisson fluid [10]. The Caisson fluid model elucidates those simple fluids in a tube flow in such a 

manner that the central core of the fluid moves akin to a plug with minimal deformation, and the velocity 

gradient is predominantly observed near the wall [7]. To analyse the plug flow of Caisson fluids, we 

consider the following nonlinear equation: 

 

𝐻 = 1 −
16

7
√𝑢 +

4

3
𝑢 −

1

21
𝑢4,    (11) 

 

where H computes the reduction in flow rate. By substituting H=0.40 into equation (11), the following 

nonlinear function is derived [11]: 

 

𝜓2(𝑢) =
1

441
𝑢8 −

8

63
𝑢5 − 0.05714285714𝑢4 +

16

9
𝑢2 − 3.624489796𝑢 + 0.3.  (12) 

 

To solve for 𝜓2, an initial guess of 𝑢0 = 2.0 with tolerance of 10−15 for the [0.00 , 0.10] interval 

is used to commence the iterative process. 

 

 

iii. Equation 3: Van Der Wall’s Equation 

 

Van Der Wall’s equation is a renowned mathematical model that provides a comprehensive 

understanding of the behaviour of both real and ideal gases [12]. The equation is expressed as follows: 

 

(𝑃 +
𝐶1𝑛2

𝑉2 )(𝑉 − 𝑛𝐶2) = 𝑖𝑅𝑇    (13) 

 

In this equation: 

● 𝑃 denotes the pressure of the gas. 

● 𝐶1 and 𝐶2 are constants. 

● 𝑛 represents the number of moles of the gas. 

● 𝑉 is the volume of the gas. 

● 𝑖 signifies the number of degrees of freedom of the gas molecules. 

● 𝑅 is the ideal gas constant. 

● 𝑇 is the temperature of the gas. 

 

By substituting specific values into this equation, it can be transformed into a nonlinear function [7]: 

 

𝜓3(𝑢) = 0.986𝑢3 − 5.181𝑢2 + 9.067𝑢 − 5.289  (14) 

 

In this equation, 𝑢 represents the volume of the gas. This equation is cubic, so it should have 

three roots. However, only one of these roots is physically meaningful because the volume of a gas 

cannot be negative. This root is approximately 1.9298462428. 

 

To find this root, an iterative process is used. This involves starting with an initial guess 𝑢 (in 

this case, 𝑢0 = 2.0) with tolerance of 10−14 for the [1.50 , 2.00] interval and then repeatedly applying 

a method to refine this guess until the true solution is reached. 

 

 

iv. Equation 4: Planck’s Radiation Law 

 

The Law of Planck’s Radiation is a pivotal principle in quantum mechanics that provides a 

comprehensive understanding of the energy density within a black isothermal body [13]. The equation 

is expressed as follows: 

 

𝜙(𝛾) =
8𝜋𝑃𝑐

𝛾5𝑒𝑃𝑐/𝛾𝑇𝑘−1
     (15) 
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In this equation: 

● P denotes the pressure of the gas. 

● c represents the speed of light. 

● Tk is the temperature of the black body. 

● γ is the wavelength  

 

The objective is to compute the wavelength 𝛾1 at which the energy density 𝜙(𝛾1) reaches its 

peak. To achieve this, equation (15) is transformed into the following nonlinear function [7]: 

 

𝜓4(𝑢) = −1 +
𝑢

5
+ 𝑒−𝑢     (16) 

 

In this equation, 𝑢 represents the wavelength. This equation is used to find the value of 𝑢 that 

maximizes the energy density. One of the estimated roots of 𝜓4 is -0.00, which signifies the maximum 

wavelength of the radiation. 

 

To find this root, an iterative process is used. This involves starting with an initial guess for u (in 

this case, 𝑢0 = 0.5) with a tolerance 10−15 for the [−1 , 1] interval and then repeatedly applying a 

method to refine this guess until the true solution is reached. 

 

 

v. Equation 5: Beam Designing Problem 

 

The problem of beam design is a significant challenge in the fields of Physics and Engineering [14]. 

This problem pertains to the determination of the embedment, denoted as 𝑢, a sheet pile wall [15]. A 

sheet pile wall is a structural element used in construction to retain soil or water. The embedment of the 

wall is mathematically represented as a scalar nonlinear function: 

 

𝜓5(𝑢) =
𝑢3+2.87𝑢2−4.62𝑢−10.28

4.62
    (17) 

 

This equation 𝑢 represents the embedment of the sheet pile wall. This equation is used to find the 

value 𝑢 that satisfies the conditions of the problem.   

 

To find this value, an iterative process is used. This involves starting with an initial guess for 𝑢 

(in this case, 𝑢0 = 1.0) with tolerance 10−14 for the [2.00 , 2.10] interval and then repeatedly applying 

a method to refine this guess until the true solution is reached. The maximum number of iterations used 

for all numerical experiments is 100. 

 

 

3 Results and Discussion  

 

The analysis of the numerical experiments reveals a nuanced perspective on the efficiency, accuracy 

and reliability of different iterative methods applied to a variety of nonlinear equations. The discussion 

is structured around the results obtained for each equation. 

 

 

A The Most Efficient Method 

 

In this section, we analyse the efficiency of the numerical methods based on the CPU time and iteration 

numbers required to converge to a solution. The following results were obtained from the experiments. 
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Table 1: Numerical Results based on computational time (Efficiency Table) 

Equations NR BM SM A1M 
1 0.3426482058114499  

Iteration: 7 

(0.0000000000 sec) 

0.34264820581145017 

Iteration: 45 

(0.0000000000 sec) 

0.3426482058114499  

Iteration: 5 

(0.0000000000 sec) 

None  

(Encounter division by 

zero) 
2 0.08643355805246679 

Iteration: 7 

(0.0000000000 sec) 

0.08643355805246672 

Iteration: 46 

(0.0000000000 sec) 

0.08643355805246677 

Iteration: 5 

(0.0000000000 sec) 

None  

(Encounter division by 

zero) 
3 None 

Iteration: 100 

(0.0000000000 sec) 

None  
Iteration: 100 

(0.0000000000 sec) 

1.9298462428478675 
Iteration: 11 

(0.0000000000 sec) 

None  
(Encounter division by 

zero) 
4 -1.16014740694848E-16 

Iteration: 6 

(0.0090053082 sec) 

0.0 
Iteration: 1 

(0.0019958019 sec) 

3.49819278439754E-17  
Iteration: 10 

(0.0080032349 sec) 

-2.18542946146473E-
16 

Iteration: 2 

(0.0039973259 sec) 
5 2.0021187789538275  

Iteration: 7 

(0.0000000000 sec) 

2.0021187789538306  
Iteration: 42 

(0.0000000000 sec) 

2.0021187789538266  
Iteration: 4 

(0.0000000000 sec) 

2.002118778953827  
Iteration: 3 

(0.0000000000 sec) 
 

 

The analysis reveals that, in terms of efficiency, the Secant method (SM) often exhibits superior 

performance, requiring fewer iterations and CPU time to converge compared to the Newton-Raphson 

(NR), Bisection (BM) and Algorithm 1(A1M) in solving Equations 1 to 3. Notably, the Bisection 

methods provided rapid convergence for well-behaved functions, such as Equation 4, and Algorithm 1 

converges quicker than other methods for Equation 5. Efficiency in terms of iterations is a crucial metric 

for real-world applications, especially when computational resources are limited. However, it is 

essential to note that the choice of the most efficient method may vary depending on the nature of the 

function and the initial guess. 

 

 

B The Most Accurate Method 

 

In this section, we evaluate the accuracy of the numerical methods concerning the absolute value of the 

roots obtained. The absolute values for each method in solving the equations are as follows: 

 
Table 2: Numerical Results based on errors (Accuracy Table) 

Equations NR BM SM A1M 
1 1.1102230246251565e-16 

Iteration: 7 

(0.0000000000 sec) 

1.6653345369377348e-16 

Iteration: 45 

(0.0000000000 sec) 

1.1102230246251565e-16 

Iteration: 5 

(0.0000000000 sec) 

(Encounter division by 

zero) 

2 1.3877787807814457e-17 

Iteration: 7 

(0.0000000000 sec) 

8.326672684688674e-17 

Iteration: 46 

(0.0000000000 sec) 

2.7755575615628914e-17  

Iteration: 5 

(0.0000000000 sec) 

(Encounter division by 

zero) 

3 3.3084646133829665e-14 
Iteration: 100 

(0.0000000000 sec) 

6.972200594645983e-14 
Iteration: 100 

(0.0000000000 sec) 

7.549516567451064e-15 

Iteration: 11 

(0.0000000000 sec) 

(Encounter division by 
zero) 

4 1.16014740694848e-16 
Iteration: 6 

(0.0090053082 sec) 

0.0 
Iteration: 1 

(0.0019958019 sec) 

3.49819278439754e-17 
Iteration: 10 

(0.0080032349 sec) 

2.18542946146473e-16 
Iteration: 2 

(0.0039973259 sec) 
5 2.6645352591003757e-15 

Iteration: 7 
(0.0000000000 sec) 

4.440892098500626e-16 

Iteration: 42 
(0.0000000000 sec) 

3.552713678800501e-15 

Iteration: 4 
(0.0000000000 sec) 

3.1086244689504383e-

15 
Iteration: 3 

(0.0000000000 sec) 
 

 

The absolute error analysis provides insight into the precision of each method in determining 

the roots. Smaller absolute errors indicate greater accuracy. The second method gives greater 

accuracy in solving Equations 1 and 3. Meanwhile, for Equation 2, the Newton-Raphson (NR) 

method overcomes other methods. On the other hand, the Bisection method (BM) gives greater 

accuracy for Equations 4 and 5. Algorithm 1 (A1M) performances showed effective convergence to 

the root, but, in many cases, it encountered a division by zero issue. However, it is crucial to 

acknowledge that the choice of the most accurate method depends on various factors, including the 

characteristics of the function and the specific requirements of the application. 
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4 Python Coding 

 

Below is the code of Python programming for the numerical experiment. 
 

A Importing Libraries 

 
import math 

from prettytable import PrettyTable 

import matplotlib.pyplot as plt 

import numpy as np 

from sympy import symbols, Eq, solve, exp, sqrt, sin, cos, tan 

import time 

 

B Defining the Function 

 
x = symbols('x') 

def f(x):  

    return (x**3 + 2.87*x**2 - 4.62*x - 10.28)/4.62  

 

C Solving the Equation Symbolically 

 
equation = Eq(f(x), 0) 

roots = solve(equation, x) 

print("Roots found:", roots) 

 

D Plotting the Function 

 
x_vals = np.linspace(-5, 5, 1000) 

f_numeric = np.vectorize(lambda x: float(f(x))) 

y_vals = f_numeric(x_vals) 

plt.plot(x_vals, y_vals) 

plt.axhline(0, color='black', linestyle='--', linewidth=0.8) 

plt.xlabel('x') 

plt.ylabel('f(x)') 

plt.title('Graph of the Function') 

plt.grid(True) 

plt.show() 

 

E Calulating the Derivative of the Function 

 

 
def df(x, epsilon=1e-6): 

    return (f(x + epsilon) - f(x - epsilon)) / (2 * epsilon) 

 

F Intermediate Value Theorem Check 

 
def ivt_check(a, b): 

    fa, fb = f(a), f(b) 

    if fa * fb > 0: 

        print("Bisection Root\t   : IVT does not guarantee a root in the 

interval. Choose a different interval.") 

        return False 

    return True 

 

G Bisection Method 

 
def bisection_auto(a, b, tolerance, max_iterations): 

    B_iter = 0 

    iterations = [] 

    if not ivt_check(a, b): 

        return None, B_iter, iterations 

 

    for i in range(max_iterations): 

        c = (a + b) / 2 

        B_iter += 1 

        error = abs(c - desired_root) 

        iterations.append((B_iter, c, f(c), error)) 
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        if error < tolerance: 

            return c, B_iter, iterations 

        if f(c) * f(a) < 0: 

            b = c 

        else: 

            a = c 

    return None, B_iter, iterations 

 

H Newton-Raphson Method  

 
def newton_raphson_auto(initial_guess, tolerance, max_iterations): 

    x = initial_guess 

    NR_iter = 0 

    iterations = [] 

    for i in range(max_iterations): 

        x = x - f(x) / df(x) 

        NR_iter += 1 

        error = abs(x-desired_root) 

        iterations.append((NR_iter, x, f(x), error)) 

        if error < tolerance: 

            return x, NR_iter, iterations 

    return None, NR_iter, iterations 

 

I Secant Method 

 
def secant_auto(x0, x1, tolerance, max_iterations): 

    S_iter = 0 

    iterations = [] 

    for i in range(max_iterations): 

        f_x0, f_x1 = f(x0), f(x1) 

        denominator = f_x1 - f_x0 

 

        # Check for zero in the denominator 

        if denominator == 0: 

            print("\nSecant Method\t   : Division by zero encountered. Cannot 

continue.") 

            return None, S_iter, iterations 

 

        x2 = x1 - (f_x1 * (x1 - x0)) / denominator 

        S_iter += 1 

        error = abs(x2 - desired_root) 

        iterations.append((S_iter, x2, f(x2), error)) 

        if error < tolerance: 

            return x2, S_iter, iterations 

        x0, x1 = x1, x2 

    return None, S_iter, iterations 

 

J Algorithm 1 Method 
 

def algorithm1_auto(initial_guess, max_iterations, tolerance): 

    al_iter = 0 

    x = initial_guess 

    iterations = [] 

    for i in range(max_iterations): 

        vi = x - f(x) / df(x) 

        wi = vi - f(vi) / df(vi) 

 

        # Check if the denominator is zero 

        denominator = df(vi) * (f(vi) - 2 * f(wi)) 

        if denominator == 0: 

            print("\nAlgorithm1 Root\t   : Division by zero encountered. 

Cannot continue.") 

            return None, al_iter, iterations 

 

        x_plus_1 = wi - (f(wi) * f(vi)) / denominator 

     

        x = x_plus_1 

        al_iter += 1 
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        error = abs(x - desired_root) 

        iterations.append((al_iter, x, f(x), error)) 

        if error < tolerance: 

            return x, al_iter, iterations 

 

    return None, al_iter, iterations 

 

K Printing Iteration Results 

 
def print_iterations_table(iterations, method_name): 

    table = PrettyTable() 

    table.field_names = ["Iteration", "Root", f"{method_name} f(Root)", 

"Absolute Error"] 

    table.add_rows(iterations) 

    print(f"\n{method_name} Iterations:") 

    print(table) 

 

if __name__ == "__main__": 

    initial_guess = float(input("Enter the initial guess: ")) 

    tolerance = float(input("Enter the tolerance: ")) 

    max_iterations = int(input("Enter the maximum number of iterations: ")) 

     

    ivt_a = float(input("Enter the lower bound for IVT (ivt_a): ")) 

    ivt_b = float(input("Enter the upper bound for IVT (ivt_b): ")) 

    desired_root = float(input("Enter the desired exact root: ")) 

 

    start_newton_raphson = time.time() 

    root_newton_auto, NR_iter, iterations_newton = 

newton_raphson_auto(initial_guess, tolerance, max_iterations) 

    end_newton_raphson = time.time() 

 

    start_bisection = time.time() 

    root_bisection_auto, B_iter, iterations_bisection = bisection_auto(ivt_a, 

ivt_b, tolerance, max_iterations) 

    end_bisection = time.time() 

 

    start_secant = time.time() 

    root_secant_auto, S_iter, iterations_secant = secant_auto(ivt_a, ivt_b, 

tolerance, max_iterations) 

    end_secant = time.time() 

 

    start_algorithm1 = time.time() 

    root_algorithm1_auto, al_iter, iterations_algorithm1 = 

algorithm1_auto(initial_guess, max_iterations, tolerance) 

    end_algorithm1 = time.time() 

 

    print("\n--------------ITERATIONS-----------------\n") 

 

    print_iterations_table(iterations_newton, "Newton-Raphson") 

     

    if ivt_check(ivt_a, ivt_b): 

        print_iterations_table(iterations_bisection, "Bisection") 

    else: 

        print("Bisection Root\t   : IVT does not guarantee a root in the 

interval. Choose a different interval.") 

 

    print_iterations_table(iterations_secant, "Secant") 

    print_iterations_table(iterations_algorithm1, "Algorithm1") 

 

    print("\n--------------RESULTS-----------------\n") 

 

    print(f"Newton-Raphson Root: {root_newton_auto} \t(Iterations: {NR_iter}, 

Time: {end_newton_raphson - start_newton_raphson:.10f} seconds)") 

    if ivt_check(ivt_a, ivt_b): 

        print(f"Bisection Root\t   : {root_bisection_auto} \t(Iterations: 

{B_iter}, Time: {end_bisection - start_bisection:.10f} seconds)") 

    print(f"Secant Root\t   : {root_secant_auto} \t(Iterations: {S_iter}, 

Time: {end_secant - start_secant:.10f} seconds)") 
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    print(f"Algorithm1 Root\t   : {root_algorithm1_auto} \t\t(Iterations: 

{al_iter}, Time: {end_algorithm1 - start_algorithm1:.10f} seconds)") 

 

    print("\n----------------END-------------------\n") 

 

 

5 Conclusion 

 

This research embarked on a comprehensive exploration of numerical methods, including Newton-

Raphson, Bisection, Secant, and Algorithm 1, to solve nonlinear equations representing diverse real-

world problems. The study revealed the behaviour of each method across varied problem domains. The 

results indicate that the Secant method requires fewer iterations and CPU time if compared to Newton-

Raphson, Bisection and Algorithm 1 in solving Equation 1. For Equation 4, the Bisection method 

converges quickly compared with other methods, and for Equation 5, Algorithm 1 converges quicker 

than other methods. In terms of accuracy, the Secant method gives greater accuracy in solving Equations 

1 and 3. Meanwhile, for Equation 2, the Newton-Raphson method overcomes other methods. On the 

other hand, the Bisection method gives greater accuracy for Equations 4 and 5. Algorithm 1's 

performance showed effective convergence to the root, but, in many cases, it encounters a division by 

zero issue. The research contributes to the practical understanding of solving nonlinear equations and 

the academic dialogue surrounding numerical methods. It also opens avenues for further refinement and 

exploration of Algorithm 1. The study concludes with recommendations for future research, 

emphasising algorithmic refinement, exploration of hybrid methods, real-world applications, and the 

importance of user-friendly implementations. The research journey encapsulates the essence of 

scientific exploration and the symbiosis between theory and computation.      
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