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Abstract: This paper analyses a simple malaria transmission model to investigate the effect of 

parameter changes in mosquitoes per capita biting rate on human population,  , by using the 

bifurcation analysis. For further investigation, we first formulated the malaria transmission model into 

a non-dimensionalized equation. Next, we employed the stability analysis of disease-free equilibrium 

and endemic equilibrium point of malaria transmission. Using the same non-dimensionalized 

equation, the one-parameter bifurcation analysis was conducted. A few graphs of the bifurcation 

diagram, phase plane and time series plot are displayed with the help of mathematical software such 

as XPPAUT, Maple, and Matlab. Findings reveal that a transcritical bifurcation occurred due to 

changes in the stability of the system’s equilibrium. When the parameter value of   increases, the 

infected human and infected mosquito population decreases. This finding demonstrates that changes 

in mosquito biting rates could have an effect on both infected humans and mosquito population.  
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1 Introduction 

 

Malaria is a mosquito-borne infectious disease caused by protozoa of the genus plasmodium. 

Plasmodium falciparum, plasmodium malariae, plasmodium vivax and plasmodium ovale are four 

dissimilar species of the parasite that infect humans [1]. Following the bite from an infectious mosquito, 

parasites enter into the bloodstream of the victim and a variety of liver cells are invaded. After 

replication, the parasites exit the liver cells and begin invading red blood cells after re-entering the 

bloodstream. This invasion of parasites results into thousands of cells that are parasite-infected in the 

bloodstream which leads to an illness and later develops into complications of malaria which, if not 

treated, can last for months. The malaria disease is commonly present in tropical states such as South 

Africa and Sudan. World Health Organisation [2] undergoes special initiatives in achieving zero malaria 

cases in these states from 2020 onwards. 

Ronald Ross [3] realized that mathematical modelling and the role of mathematics can provide an 

explicit frame work in order to understand disease transmission dynamics between hosts and parasites. 

The mathematical modelling of malaria transmission starts from the Ross’ model with many 

improvements done on the model throughout the years [4]. The Ross’ model was enhanced by 

Macdonald and formed a Ross-Macdonald model where he introduced superinfection, reinfection of 

those who were infected hence carrying multiple types of parasites, and quantitatively synthesized 

malaria epidemiology [5]. Abboubakar et al. [6] used the bifurcation analysis onto the malaria model 

and applied the basic reproduction number, 0R  of the malaria disease as the parameter. Result shows 

that the basic reproduction number, 0R , has no impact when varying the relative biting rate of infectious 

mosquitoes. Besides, the time delay can also be a bifurcation parameter which results in significant 

impact on vector-borne epidemic model. The magnitude of the delay can affect the existence and the 

direction of Hopf bifurcation [7]. 

The bifurcation analysis on malaria model was employed by several of the researchers in their 

studies [8-11].  
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Feng et al. [12] found that backward bifurcation may occur as a result of disease-free equilibrium 

coexisting with two endemic equilibria by using the model to stimulate reported malaria cases in China.  

In backward bifurcation, when reproduction number, 0 1R  , a small positive will result into an unstable 

equilibrium while large positive equilibrium are locally asymptotically stable [13].  

Authors discussed an epidemic model for malaria by showing the occurence of backward bifurcation 

which implies the existence of a stable disease-free equilibrium and stable endemic equilibrium. If 

0 1R   and with certain conditions, it is observed that a unique endemic equilibrium is globally 

asymptotically stable [14]. 

For this research, an earlier stage of the simple malaria model by Ndanusa and Busari [5] based on 

the Ross-Macdonald model has been employed. Ndanusa and Busari [5] applied the Runge-Kutta 

integration scheme method to investigate the effect of various parameters on malaria transmission. 

Motivated by their work, we are mainly interested in the investigation using the bifurcation analysis. In 

particular, we seek to answer the following question: when does the biting rates of mosquitoes matter 

in determining the dynamics of infected human and infected mosquito population? This research only 

focuses on the parameter of per capita biting rate of mosquitoes on human population, β, for our 

bifurcation analysis. We chose to vary that parameter since we want to investigate the changing effect 

of per capita biting rate of mosquitoes on human population,  , towards both infected human and 

mosquito population.  

This paper is organized as follows. Section 2 discusses the non-dimensionalized equation for a 

simple malaria transmission model, as well as steady states, equilibria, and stability analysis for the 

malaria transmission model. Section 3 highlights the results and discussions of stability analysis and 

numerical bifurcation analysis while the result and conclusions are discussed in Section 4. 

2 Methodology 

A The Malaria Transmission Model 

 

The mathematical modelling of a basic malaria transmission model presented below expresses the key 

elements of malaria epidemiology studied by Roberts and Heesterbeek [15]. Table 1 shows the 

definition of each parameter in the model. 

 

 (1 )
dX M

ab Y X X
d N

= − − 


, 0(0)X X=  

 (1 )
dY

acX Y Y
d

= − −


,     0(0)Y Y= .                                    (1) 

 

Table 1: Definition of parameters in Eq. (1). 

 

Parameter Definition 

X  Fraction of infected human population 

Y  Fraction of infected mosquito population 

M

N
 

Number of female mosquitoes per human host in an infection free state 

a  Per biting rate of mosquitoes on human populations 

b  Probability that a bite by an infectious mosquito transmits the agent 

c  Probability that a bite of an infected human by a susceptible mosquito results 

in transmission of the agent to the mosquito 
  Rate at which humans recover from infection 
  Per capita death rate of mosquitos 
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To reduce the total number of parameters, a non-dimensionalized equation is necessary, resulting in 

simplified equations that will be utilised to study the stability analysis of the malaria model at malaria 

disease-free equilibrium and endemic equilibrium. Next, dimensionless variables for fraction of 

infected humans, fraction of infected mosquitoes and time are introduced by letting 

 

 
ac

x X=


,  
abM

y Y
N

=


,  t ac=  . 

 

Therefore, the non-dimensionalized equations of the simple malaria model are: 

 

 (1 )
dx

y x y
dt

=  − +  

(1 )
dy

x y x
dt

=  −  +                        (2) 

 

where   is 



  which is the human recovery rate,   is 

ac


  which is the per capita biting rate of 

mosquitoes on human population,   is 
bM

Nc




 which is the number of female mosquitoes per human 

host in an infection-free steady state and   is 
ac


 which is the per capita death rate of mosquitoes are 

the parameters. From Eq. (2), x  and y  are dependent variables where x  and y  are infected human and 

infected mosquito population, respectively. However, independent variable t  is defined as a time. 

 

B Stability Analysis 

 

There are two possible steady states which are malaria disease free equilibrium, 1 ( ,0)E x=  where the 

value of y  is equal to zero to indicate an entirely healthy population in the absence of mosquitoes and 

the disease at endemic equilibrium, 2 ( , )E x y =  to indicate the human contains susceptible and 

infected. The malaria model Eq. (2) is solved by using Jacobian matrix in order to find the eigenvalues. 

 

i. Disease Free Equilibrium Point 

 

The Jacobian matrix for Eq. (2) is represented by: 

 

 
,

(1 )

(1 )
x y

y x
J

y x

− +  − 
=  

 −  − + 
. 

 

1 ( ,0)E x=  is substituted into Jacobian matrix for linearization of Eq. (2). The resulted matrix is 

 

 
*

, (1 )x y

x
J

x
 

 −  −
=  

 − + 
. 

 

Here, the parameter was simplified by letting: 

 

 x =  −  

 (1 )x =  + . 
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Then, a new Jacobian matrix obtained is to be used in finding the eigenvalues. To find the eigenvalues, 

the determinant was determined and set to equal zero, 

 

 
,0x

J 

−  
=  

 − 
 

 det( ) detJ I
− −   

−  =  
 − −  

 

 ( )( ) 0−− −− − =  

 
2 ( ) ( ) 0 +  +   +  − = . 

 

To illustrate and obtain the exact values of  , 2x =  was assumed to indicate the existence of human 

population. Hence, new point 1 (2,0)E =  together with the parameter values as in Table 2 will be used 

to find the eigenvalues at disease-free equilibrium. 

 

Table 2: Parameter values for malaria Eq. (2) 

 

Parameter Definition Value Source 
   Human recovery rate 0.003704 [8] 
   The number of female mosquitoes per human 

host in an infection free steady state 

0.5 [5] 

   Per capita biting rate of mosquitoes on human 0.0025 Assumed 

   Per capita death rate of mosquitoes 0.03 [12] 
 

By substituting all the parameter values into quadratic equation, the eigenvalues,  , at disease-free 

equilibrium are 1 0.0107 = −  and 2 0.0818 = − .  

 

ii. Endemic Equilibrium Point 

 

The endemic equilibrium point, 2 ( , )E x y =  is substituted into Jacobian matrix. The resulted matrix 

is: 

 

 
,

(1 )

(1 )x y

y x
J

y x
 

 

 

 − +  −
=  

 −  − + 
. 

 

Here, the parameter was simplified by letting: 

 

 1 (1 )y =  +  

 1 x =  −  

 1 y =  −   

 1 (1 )x =  + . 

 

Then, a new Jacobian matrix is obtained to be used in finding the eigenvalues. 

 

 
1 1

,
1 1

x y
J  

−  
=  

 − 
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1 1

1 1

det( ) detJ I
− −   

−  =  
 − −  

 

 1 1 1 1( )( ) 0− − − − −  =  

 
2

1 1 1 1 1 1( ) ( ) 0 +  +   +   −  =  

 

To obtain  , the values assumed for ( , )x y   is (2,2)  to indicate the existence of human and mosquito 

population. Hence, a new point 2 (2,2)E =  together with the parameter values as in Table 2 will be used 

to find the eigenvalues at endemic equilibrium. By substituting all the parameter values into quadratic 

equations, the eigenvalues,  , at endemic equilibrium are 1 0.01511 = −  and 2 0.08239 = − . 

3 Result and Discussions  

A Stability Analysis of Disease-Free Equilibrium Point and Endemic Equilibrium Point 

 

The stability of an equilibria obtained through a malaria model has been investigated in detail. 

According to Ndanusa and Busari [5], the equilibrium attained by an entirely healthy population where 

there is an absence of mosquitoes is a disease-free equilibrium. For this model, the disease-free 

equilibrium point is 1 ( ,0)E x= . The stability obtained for disease-free equilibrium is stable when the 

value of x  is assumed as 2  so that x  is more than 1 . It is concluded that, to be stable, the eigenvalues 

1 0.0107 = −  and 2 0.0818 = −  are distinct real values with both negative signs. Also, according to 

the stability properties of linear systems in [5], when 1 is less than 2 , and both are less than 0 , 

1 2 0    , the equilibrium point is an asymptotically stable improper node. 

Next, another equilibrium point that is the endemic equilibrium point is also attained from [5]. The 

human population is both susceptible and infected during the state of endemic equilibrium. The endemic 

equilibrium point is 2 ( , )E x y = . The acquired stability for endemic equilibrium from computing the 

determinant of the Jacobian matrix is stable as the eigenvalue, 1 0.01511 = −  and 2 0.08239 = −  are 

distinct real eigenvalues with the same negative signs. In addition to that, the endemic equilibrium point 

is an asymptotically stable improper node as 1 is less than 2 , and both of these eigenvalues are less 

than 0 , 1 2 0    . 

 

B Numerical bifurcation analysis 

 

The behaviors of the malaria transmission model were investigated by performing bifurcation analysis 

using parameter variation technique. The malaria system Eq. (2) was analyzed and the bifurcation 

diagrams were obtained using a numerical software, XPPAUT. The process in this software began by 

coding the bifurcation analysis using Auto (in XPPAUT) where this will include the non- 

dimensionalized Eq. (2) and the parameters were set according to Table 2 for simplicity. Further steps 

were conducted to obtain bifurcation diagrams and bifurcation point. Since the parameter of biting rate 

of mosquitoes on humans needs to be varied, two other values were determined based on the bifurcation 

point. Consequently, the stability of the steady states, 1E  and 2E  for both values lesser than   and 

more than   can be analysed with the help of Maple software. We investigated the effects of per capita 

biting rate of mosquitoes on human population parameter, β, found in the system. Figure 1 illustrates 

the steady states, 1E  and 2E , in the bifurcation diagrams with respect to the per capita biting rate of 

mosquitoes on human parameter,  . In both diagrams, the red solid line represents the stable steady 

states, the blue dashed line represents the unstable steady states and the vertical orange dashed line 

represents the transcritical bifurcation point. 
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Based on Figure 1, it can be observed that there are occurrences of transcritical bifurcation where 

the steady state branches, 1E  and 2E , interchange with each other after passing through the bifurcation 

point, 0.06173 = . This is because an intermediate change in parameter   affected the stability and 

the equilibrium of the system. This change in stability and equilibrium are also illustrated in Table 3 

where it can be seen clearly that the steady state, 1E , is an unstable saddle node and after the occurrence 

of transcritical bifurcation, 2E  changed into asymptotically stable node while steady state, and 2E  

interchanged from asymptotically stable node to unstable saddle node after the transcritical bifurcation 

point. 

 

 

 
(a) 
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(b) 

 

Figure 1: Bifurcation diagrams of Eq. (2) with respect to the per capita biting rate of mosquitoes on 

human,  , with 0.003704 = , 0.5 =  and 0.03 =  for (a) infected human population X  and (b) 

infected mosquito population Y , respectively. 

 

Table 3: Stability and bifurcation analysis results.  

 

Bifurcation 

parameter 
Steady states Eigenvalues Characteristics Figure 

0.05 =  

1 (0,0)E =  
1 0.08418 = −  

1 0.00418 =  
Unstable saddle node 

2 

 

2 (0.01328,0.21848)E =  
1 0.08729 = −  

1 0.00403 = −  

Asymptotically stable 

node 

0.0617 =  Transcritical bifurcation point 

0.08 =  

1 (0,0)E =  
1 0.10477 = −  

1 0.00523 = −  

Asymptotically stable 

node 3 

 

2 ( 0.01293, 0.21825)E = − −  
1 0.09776 = −  

1 0.00561 =  
Unstable saddle node 

 
It also shows that both population densities of infected humans and infected mosquitoes decrease as 

mosquitoes' per capita biting rate on human population increases. This situation happens because, as 

the biting rate of mosquitoes increases, the mortality of mosquitoes increases, hence lesser mosquitoes 

are likely to survive to become infectious. Therefore, humans are also less likely to be infected when 

there are lesser infected mosquitoes as lesser vectors carry the parasite. This scenario can be described 

by the red lines in region (I) of Figure 1, wherein, in this case, both infected human and infected 

mosquito population depletes in number. However, when mosquitoes' per capita biting rate on human 

population continuously increases until it exceeds a certain threshold 0.06173 = , the steady state of 

1E  and 2E  interchange with each other where eradicating both infected human and infected mosquito 

population occurs as illustrated in the region (II). 

The results for this study are compared with Abboubakar et al. [6], where it was proven that the 

results in Figure 1 are logical. As the relative biting rate of mosquitoes increases, the proportion of both 

infectious and mosquitoes decreases. The increased biting rate of mosquitoes is cancelled by the shorter 

lifespan of infectious mosquitoes, which causes a decrease in the infected mosquito population. Hence, 

when there are lesser infected mosquitoes, humans are less likely to be infected, which then causes a 

decrease in the infected human population. 

Furthermore, region (II) depicts an excessive per capita mosquito biting rate on human population. 

As stated in [6], increasing the biting rate of mosquitoes causes a decrease in the proportion of infected 

mosquitoes. This is because more mosquitoes are more likely to die due to their higher death rate, thus 

causing both the population of infected mosquitoes and infected humans to be eradicated. The phase 

portraits of each parameter value of   in Table 2 are plotted in Figures 2 and 3. 
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Figure 2: Phase portrait for system Eq. (2) with 0.05 =  and initial conditions (0) 1x =  and (0) 1y = . 

The equilibrium point 1E  is unstable and 2E  is stable. 

 

Figure 3: Phase portrait for system Eq. (2) with 0.08 =  and initial conditions (0) 1x =  and (0) 1y = . 

The equilibrium point 1E  is unstable and 2E  is unstable. 

Based on the phase potraits in Figures 2 and 3, the occurrence of transcritical bifurcation is further 

proven as an interchange in stability for both 1E  and 2E  can be observed. The steady state 1E , that is 

initially stable in Figure 2, interchanged its stability when passing the bifurcation point 0.06173 =  

and became unstable in Figure 3. Similar interchange in stability can also be observed with 2E . 

Time series graphs are also plotted using Matlab software to investigate the dynamical behaviors of 

the system with respect to time as shown in Figures 4 and 5.  
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Figure 4: Time series graph of malaria model with parameter values 0.003704 = , 0.5 =  and 

0.03 =  and initial conditions of 0 0( , ) (1,1)x y =  with 0.05 =  (region I). 

 

Figure 4 demonstrates that when the per capita biting rate of mosquitoes on human population 

parameter   is less than 0.06173 , the infected mosquito population increases rapidly at first and reaches 

a maximum value of 11.4t = , before gradually decreasing in value. According to Anderson et al. [16], 

the decrease in the infected mosquito population is caused by an increase in the mosquito mortality rate 

whenever mosquitoes bite humans, as infected mosquitoes tend to bite humans more than once to obtain 

a full blood meal, which increases the risk of the mosquitoes being killed during feeding. However, the 

infected human population instantly decreases, and after a short period of time, it becomes constant, but 

not fully eradicated as it does not reach zero. This is the result of the increased mortality rate of 

mosquitoes. As the infected mosquito population decreases, the infected human population also 

decreases in number over time as the malaria disease is transmitted through infected mosquitoes. 

 

Figure 5: Time series graph of the malaria model with parameter values 0.003704 = , 0.5 =  and 

0.03 =  and initial conditions of 0 0( , ) (1,1)x y =  with 0.08 =  (region II). 

 

As shown in Figure 5, the population of infected mosquitoes increases at a slower rate when the per 

capita biting rate of mosquitoes on human population parameter,  , exceeds 0.06173 . It is also 
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observed that the infected mosquito population increases at a slower rate as compared to Figure 4. The 

population of infected mosquitoes then maximizes at value 8.45t = , and gradually decreases in value. 

The decreased infected mosquito population then becomes constant after a period of time. This results 

from the increased mortality rate of mosquitoes, where more infected mosquitoes are more likely to die 

over time. A higher biting rate indicates an increase in infectious mosquito population. However, the 

short life span cancels the biting rate and causes a depletion in the number of infected mosquito 

population. The infected human population, however, instantly reduces in a short period of time and, 

after a while, it goes near zero and becomes extinct. The continuous reduction in the number of infected 

mosquito population highly affected the population of infected humans as fewer humans could be 

infected. 

4 Conclusions 

 

In this paper, a simple malaria transmission model that represents the important aspects of malaria 

epidemiology has been formulated in non-dimensionalized equations. By employing this equation, the 

behaviour of the system was easy to be further analysed using bifurcation analysis.  

Furthermore, the effect of per capita biting rate of mosquitoes on human population,  , was analysed 

as it is the most essential parameter that has an influence in malaria transmission. By using the same 

parameter values in Table 2, the type of co-dimension one bifurcation occurring in the malaria model 

is the transcritical bifurcation point at  =  , as there is an exchange of stability analysis between 

two fixed points, 1E  and 2E . When the value of   is higher than the transcritical bifurcation point, its 

stability at the steady state 1E  starts out being unstable but later becomes stable. For the other steady 

state, 2E , the sequence of changes is the opposite. Thus, when parameter value of   increases, infected 

human and infected mosquito population decreases. This shows that the biting rate of mosquitoes leads 

to a change in both the populations of infected human and infected mosquitoes. 

In general, people should take precautions wherever they go, especially travellers who travel to zones 

with malaria transmission occurring, in order to protect themselves from being bitten by infected 

mosquitoes. To illustrate, awareness of the rate of malaria cases in regions to be visited by travellers, 

the use of mosquito bed nets, wearing long sleeves and long pants as well as the use of insect repellent 

when required are several precautionary steps that could be easily implemented in people’s lives to 

avoid the risk of being infected with malaria disease. If symptoms of this disease, such as fever during 

or after arriving home from travel were detected, they should seek treatment from medical professionals. 

Besides that, a few other steps are through a required increase in water flow and disposal of empty 

containers that can lead to stagnant water. These actions could eliminate the breeding sites of infected 

mosquitoes as well as control the transmission of malaria disease. Thus, future research should study 

the effect of human recovery rate that have been infected by malaria disease using bifurcation analysis. 

This could ensure that the strategies to eliminate the malaria disease is successful, hence, the target of 

malaria-free status can be achieved in the future. 
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