Journal of Mathematics and Computing Science, 10 (2): 25-30, 2024
Copyright © UiTM Press
eISSN: 0128-0767

Challenges in Developing Artificial Intelligence-based Systems using Classic Software
Development Life Cycle

Noorihan Abdul Rahman'*

"College of Computing, Informatics and Mathematics, Universiti Teknologi MARA Kelantan, Bukit Ilmu, Machang,
Kelantan, Malaysia

Authors’ email: noorihan@uitm.edu.my

*Corresponding author

Received 17 September 2024; Received in revised 15 October 2024; Accepted 13 November 2024
Available online 6 December 2024
DOI: https://doi.org/10.24191/jmcs.v10i2.4267

Abstract: Artificial intelligence (Al) tools have become an essential part of modern software systems,
driving automation, predictive analysis, and intelligent decision-making. However, the development
of Al tools using traditional software engineering methodologies, specifically the Software
Development Life Cycle (SDLC), presents unique challenges. This paper explores the intricacies and
limitations of the classic SDLC in the context of Al-based system development, covering issues
related to requirements gathering, design, implementation, testing, deployment, and maintenance. The
analysis highlights the need for flexibility and iterative development models to meet the dynamic
nature of Al projects. This paper summarises possible considerations that need to be taken care of
since building Al-based systems requires a more flexible and iterative approach to accommodate the
uncertainty, complexity, and dynamism in its own development.

Keywords: Artificial intelligence, Development, Phases, Software development life cycle

1 Introduction

Artificial intelligence (AI) has emerged as a disruptive technology, influencing diverse sectors
including healthcare, finance, manufacturing, and education [1], [2]. The increasing demand for Al
solutions has prompted developers and organisations to integrate AI components into their software
systems. Since the development of the digital computer in the 1940s, Al has demonstrated that
computers can be programmed to carry out very complex tasks [3]. However, building Al-based
systems is fundamentally different from traditional software engineering due to their reliance on data,
models, and learning algorithms. Due to their complex behaviour, there is a crucial need for a tailored
development process for such systems. However, there is still no widely used and specifically tailored
process in place to effectively and efficiently deal with requirements suitable for specifying a software
solution that uses machine learning [4].

The Software Development Life Cycle (SDLC) is a well-established methodology for guiding
the development of traditional software systems [5], [6]. The classic SDLC typically follows a
structured approach with distinct phases namely requirements gathering, system design,
implementation, testing, deployment, and maintenance. While this linear process has been proven
effective for well-defined software projects, it presents notable challenges when applied to Al tool
development. Al-based systems like generative models are increasingly integrated into the SDLC. They
can automate tasks like code generation, documentation, and comprehensive testing, which accelerates
development and improves software quality [7]. This paper examines the unique issues that arise in
each SDLC phase when dealing with Al-based development.

@ @ @ This is an open access article under the CC BY-SA license 25
e (https://creativecommons.org/licenses/by-sa/3.0/).

Noorihan Abdul Rahman

2 Overview of Al-based system

The use of Al systems in government and private industries has been documented since 1989 during
the IAAI conference. Over the years, Al has expanded for more commercial usage, and this has caused
tremendous feedback from many experts and consumers. Recently, the expansion of Al systems has
advanced to machine learning (ML); hence, the Al-based development model has been challenging and
difficult to explain [8]. In addition, the use of Al has been integrated in the information system
environment, and this has led to the uncertainty issue in decision-making among Al-assisted system
users. Table 1 shows examples of Al systems that have been widely used by various industries in recent
years.

Table 1: Examples of Al-based systems [9]

Problems and System Types Specific Applications
Rule-Based Systems: Widely applied base TurboTax
technology
Credit Card Fraud Alert Netflix Recommender
Insurance FareCast, Google Flights, Kayak
price predictor
Scheduling: Maintenance, Crew, Gate Narrative Science
GameChanger
Video Games IBM Watson
Search Engines Dragon Speech Recognition
Augmented/Virtual Reality Amazon Robotics / Kiva
Systems
Photo Face Recognition Roomba
Handwriting Recognition: Mail Sorting, ATM- Kinect
Checks
Translation Driver-Assist / Self-Driving
Vehicles
Deep Learning Siri, Cortana, Amazon Echo
Robotics TurboTax

To elaborate Table 1, Rule-Based Systems (RBS) are a type of Al system that uses a predefined
set of rules to make decisions or solve problems. These rules are often expressed as “if-then” statements
and form the basis for reasoning within the system. It contains the set of rules, which are typically
derived from expert knowledge.

Explainable Al (XAI) tools can be used to provide clear reasons why a transaction was flagged
as fraudulent. Netflix recommender can analyse user preferences and behaviour patterns for detecting
anomalies in the use of Netflix by its users. In the insurance industry, Al is transforming the industry
by optimising processes, improving decision-making, and enhancing customer experiences. This can
increase operational efficiency, customer satisfaction, and profitability in the insurance sector, whereas
in scheduling applications, Al can assist to automate and optimise scheduling itself, especially in
resource and time allocation to accomplish certain transactions. Al also plays a crucial role in
developing software applications across domains such as search engines, augmented and virtual reality,
robotics, and deep learning by enhancing functionality, scalability, and user interactivity with Al
capabilities such as Natural Language Processing (NLP), content generation, and autonomous decision-
making.

The next section evaluates possibilities of challenges during SDLC activities in developing Al-
based development environment.

26

Challenges in Developing Artificial Intelligence-based Systems using Classic Software Development Life Cycle

3 Evaluation of SDLC phases for Al-based development environment

This section elaborates phases of SDLC which are related to Al-based system development issues.

A Requirements Gathering

Based on the literature, during the requirements gathering phase, the three main challenges identified
in developing Al-based systems during this phase are uncertainty in problem scope, evolving
requirements, and a lack of clear success criteria. In terms of uncertainty in problem scope, Al systems
often operate in domains characterised by uncertainty and complexity. The problem to be solved may
not have a clear and defined solution. For instance, an Al tool designed for image recognition might
have unpredictable performance based on the quality and variability of the data provided [10]. Next, Al
systems often start with exploratory research, which evolves as new data becomes available or as the
understanding of the problem deepens. Traditional SDLC struggles to accommodate these changing
requirements, which can lead to rework or delays [11]. There is also a weakness in clarifying success
criteria. Defining success in Al systems is more difficult than in traditional software. Al performance
is typically measured in terms of accuracy, precision, recall, or other statistical measures rather than
functional correctness. The thresholds for acceptable performance can be ambiguous or may change
over time, depending on the use case [12].

B System Design

Secondly, system design in the SDLC focuses on creating a blueprint for the software system, covering
architecture, data flow, user interfaces, and system components. There are a few challenges identified
in developing Al systems during this phase. The first challenge is related to model selection
uncertainties. Al tools depend heavily on machine learning models, and the choice of model is not
always clear at the outset. Different machine learning models, such as decision trees, neural networks,
and support vector machines, have distinct strengths and weaknesses, and their suitability may depend
on factors such as data quality, feature availability, and computational resources. This introduces
uncertainty in the design phase, where traditional SDLC assumes that design choices can be made early
and remain relatively stable [13]. Next, Al systems are data-driven, for which the developer needs to
design efficient data integration. Challenges arise in integrating disparate data sources, handling
unstructured data, and ensuring data quality. Unlike traditional software systems, where inputs are
typically deterministic, Al systems must be designed to process large, heterogeneous datasets, which
adds significant complexity to the design process [14]. Thirdly, Al models require experimentation and
tuning, which often means that the design of the Al system needs to be flexible and open to change.
The traditional SDLC, with its emphasis on upfront design, does not accommodate the iterative,
experimental nature of Al development well [15].

C Implementation

The next phase reveals the implementation phase, which involves coding the system according to the
design specifications. For Al tools, this phase presents several distinct challenges. Firstly, Al systems
often require specialised programming languages and frameworks such as Python with TensorFlow or
PyTorch [16]. These tools are different from those used in conventional software development,
requiring developers to have a strong understanding of both software engineering principles and
machine learning techniques. This can create a steep learning curve for development teams unfamiliar
with AI [17]. Secondly, Al components must often be integrated into existing systems, which may have
been developed using different programming languages or architectures [18]. Ensuring seamless
integration between Al models and traditional software components is a complex task that can introduce
additional technical debt if not managed properly. Next, Al systems, particularly those based on deep
learning, can be resource-intensive, requiring significant computational power such as graphics
processing units (GPUs) for both training and inference. Traditional SDLC assumes that computational
constraints are predictable; however, in Al, these constraints can vary depending on the size and
complexity of the models being trained [19].

27

Noorihan Abdul Rahman

D Testing

Testing is one of the most critical phases of the SDLC, ensuring that the system meets the specified
requirements. In traditional software development, testing involves verifying that the system behaves
as expected under predefined conditions. However, testing Al systems introduces unique challenges.
Unlike traditional software systems, where outputs are deterministic, Al systems produce probabilistic
results [20]. For example, in a predictive model, the same input might yield slightly different outputs
depending on factors such as random initialisation, data shuffling, or stochastic learning processes. This
makes it difficult to define clear test cases and to verify correctness in the traditional sense [21]. In
addition, there are possible issues such as data dependency and during continuous testing. The
performance of an Al system is highly dependent on the quality and diversity of the data used during
testing [21]. In many cases, acquiring representative test data is a significant challenge. Moreover,
traditional test case generation strategies may not be applicable since Al models are tested based on
statistical performance measures such as accuracy and F1-score rather than pass or fail outcomes.

E Deployment and Maintenance

Once the Al system has been developed and tested, the deployment phase follows, where the system is
moved to production. Maintenance involves ensuring the system’s continued operation and addressing
any issues that arise post-deployment. Deploying Al models is not as straightforward as deploying
traditional software components [23]. Al models may need to be re-trained or fine-tuned in real-time
based on new data. This requires a robust infrastructure to support ongoing model updates, which is not
typically a part of the traditional SDLC’s deployment framework. Over time, Al models may become
less accurate due to changes in the underlying data distributions, a phenomenon referred to as model
drift. Maintaining Al systems requires ongoing monitoring and retraining of models to ensure continued
performance, which is a more dynamic and resource-intensive process than traditional software
maintenance [24]. The deployment of Al systems introduces new ethical challenges, such as bias,
transparency, and accountability [25]. Ensuring that Al systems operate within legal and ethical
guidelines is an ongoing challenge during the maintenance phase, especially as regulations evolve.

4 Conclusion

The traditional SDLC offers a structured and linear approach to software development that has proven
effective for many types of software projects. However, applying this methodology to Al tool
development presents significant challenges. Al systems require a more flexible and iterative approach
to accommodate the uncertainty, complexity, and dynamism inherent in machine learning and data-
driven development. To address these challenges, organisations may need to adopt hybrid development
methodologies, such as Agile or DevOps, which allow for more frequent iteration, testing, and
adaptation throughout the Al development life cycle. DevOps addresses the challenges of developing
Al systems by streamlining collaboration between data scientists, developers, and operations teams
through shared tools and workflows. It automates repetitive processes like data preprocessing, model
training, testing, and deployment.

Additionally, DevOps may help to ensure scalability, reliability, and consistent monitoring of
Al models in production environments. Meanwhile, agile software development addresses the
challenges of Al system development by emphasising iterative progress, enabling teams to refine
models and algorithms incrementally based on feedback and changing requirements. It fosters
collaboration between data scientists, developers, and stakeholders, ensuring alignment and adaptability
throughout the development process. Agile focuses on short development cycles, and continuous
improvement helps manage the complexities of integrating data pipelines, training models, and
deploying Al systems effectively. In summary, regardless of the software development product, the
software process must be carefully examined in order to produce an accurate mechanism for allowing
desirable outputs and hence produce its expected outcome as the software output.

28

Challenges in Developing Artificial Intelligence-based Systems using Classic Software Development Life Cycle

Acknowledgements

The author would like to thank Universiti Teknologi MARA Kelantan Branch for supporting the
research process on Artificial Intelligence.

Conflict of Interest Statement

The authors agree that this research was conducted in the absence of any self-benefits, commercial or
financial conflicts and declare the absence of conflicting interests with the funders.

References

(1]

(2]

(3]
(4]

(3]
(6]

(7]
(8]

(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

W. Liu, G. Zhuang, X. Liu, S. Hu, R. He, and Y. Wang, “How do we move towards true artificial
intelligence,” in 2021 IEEE 23rd Int Conf on High Performance Computing & Communications,
7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City;, 7th Int Conf on
Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys), 2021, pp. 2156-2158.

M. N. P. Ma’ady et al., “Making Sense of Developing Artificial Intelligence-Based System in
Software Development Life Cycle Manner and Addressing Risk Factors,” in 2023 6th
International Conference of Computer and Informatics Engineering (IC2IE), 2023, pp. 244-249.
H. Jindal, D. Kumar, S. Kumar, and R. Kumar, “role of artificial intelligence in distinct sector:
A study,” Asian J. Comput. Sci. Technol., vol. 10, no. 1, pp. 18-28, 2021.

H. Belani, M. Vukovic, and Z. Car, “Requirements Engineering Challenges in Building Al-Based
Complex Systems,” in 2019 IEEE 27th International Requirements Engineering Conference
Workshops (REW), 2019, pp. 252-255.

A. Gupta, A. Rawal, and Y. Barge, “Comparative Study of Different SDLC Models,” Int. J. Res.
Appl. Sci. Eng. Technol, vol. 9, no. 11, pp. 73-80, 2021.

O. E. Olorunshola and F. N. Ogwueleka, “Review of system development life cycle (SDLC)
models for effective application delivery,” in Information and Communication Technology for
Competitive Strategies (ICTCS 2020) ICT: Applications and Social Interfaces, 2022, pp. 281—
2809.

A. Soni, A. Kumar, R. Arora, and R. Garine, “Integrating Al into the Software Development Life
Cycle: Best Practices, Tools, and Impact Analysis,” Tools, Impact Anal. (June 10, 2023), 2023.
S. Laato, M. Tiainen, A. K. M. Najmul Islam, and M. Méntymaiki, “How to explain Al systems
to end users: a systematic literature review and research agenda,” Internet Res., vol. 32, no. 7,
pp- 1-31, 2022.

J. Smith, R. G. and Eckroth, “Building Al Applications: Yesterday, Today, and Tomorrow,” A/
Magazine, pp. 6-22,2017.

B. D. Radhakrishnan and J. J. Jaurez, “Explainable artificial intelligence (XAI) in project
management curriculum: Exploration and application to time, cost, and risk,” 2021.

S. S. Gill ef al., “Al for next generation computing: Emerging trends and future directions,”
Internet of Things, vol. 19, p. 100514, 2022.

L. Floridi, J. Cowls, T. C. King, and M. Taddeo, “How to design Al for social good: Seven
essential factors,” Ethics, Governance, Policies Artif. Intell., pp. 125-151, 2021.

I. Aradea, 1. Supriana, and K. Surendro, “ARAS: adaptation requirements for adaptive systems:
Handling runtime uncertainty of contextual requirements,” Autom. Softw. Eng., vol. 30, no. 1, p.
2,2023.

F. Badra, “A dataset complexity measure for analogical transfer,” 2021.

M. Haakman, L. Cruz, H. Huijgens, and A. Van Deursen, “Al lifecycle models need to be revised:
An exploratory study in Fintech,” Empir. Softw. Eng., vol. 26, no. 5, p. 95, 2021.

Y. H. Liu, Python Machine Learning by Example: Build Intelligent Systems Using Python,
TensorFlow 2, PyTorch, and Scikit-Learn. Packt Publishing Ltd, 2020.

0.-C. Novac et al., “Analysis of the application efficiency of TensorFlow and PyTorch in
convolutional neural network,” Sensors, vol. 22, no. 22, p. 8872, 2022.

29

[18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]

Noorihan Abdul Rahman

A. Aldoseri, K. N. Al-Khalifa, and A. M. Hamouda, ‘“Re-thinking data strategy and integration
for artificial intelligence: concepts, opportunities, and challenges,” Appl. Sci., vol. 13, no. 12, p.
7082, 2023.

S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge intelligence: The
confluence of edge computing and artificial intelligence,” IEEE Internet Things J., vol. 7, no. 8,
pp. 7457-7469, 2020.

I. Van de Poel, “Embedding values in artificial intelligence (Al) systems,” Minds Mach., vol. 30,
no. 3, pp. 385409, 2020.

P. Hase and M. Bansal, “Evaluating explainable Al: Which algorithmic explanations help users
predict model behavior?,” arXiv Prepr. arXiv2005.01831, 2020.

I. H. Sarker, “Al-based modeling: techniques, applications and research issues towards
automation, intelligent and smart systems,” SN Comput. Sci., vol. 3, no. 2, p. 158, 2022.

M. M. John, H. H. Olsson, and J. Bosch, “Developing ml/dl models: A design framework,” in
Proceedings of the International Conference on Software and System Processes, 2020, pp. 1-10.
Z.S. Ageed et al., “A state of art survey for intelligent energy monitoring systems,” Asian J. Res.
Comput. Sci., vol. 8, no. 1, pp. 46—61, 2021.

J. Borenstein and A. Howard, “Emerging challenges in Al and the need for Al ethics education,”
Al Ethics, vol. 1, pp. 61-65, 2021.

30

