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Abstract: Skincare is an essential aspect of personal care, but selecting suitable products remains
challenging due to individual variations in skin type and condition. Existing skincare recommendation
systems rely on questionnaires, which may lead to inaccurate recommendations. This study explores
the application of machine learning algorithms, particularly Convolutional Neural Networks (CNNs),
for automated skin analysis and personalised skincare recommendations. By analysing images of
users’ skin, the system can classify skin types, detect conditions such as acne or dryness, and suggest
suitable products. The study evaluates different deep learning models, including VGG-16, ResNet-50,
and MobileNetV2, comparing their accuracy and efficiency. Experimental results indicate that the
proposed model achieves high accuracy in classifying skin conditions, demonstrating the potential of
machine learning in revolutionising personalised skincare solutions.
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1 Introduction

The global skincare industry continues to grow rapidly, driven by increasing consumer demand for
customised solutions. According to Rodgers [1], 99% of 1,000 women surveyed worldwide reported
they would prioritise investment in skincare. Despite this trend, most current recommendation systems
depend on self-assessment questionnaires or dermatological consultations, which are time-intensive and
subject to user interpretation. Though there are not many skincare recommendation systems on the
market right now, and most of them are limited to the skincare brand’s website where customers can
personalise products by answering questions about their skin conditions but not using artificial
intelligence (Al) analysis. Based on personal knowledge, Proven, SkinKick, Sephora, and Clinique are
examples of having skincare personalisation service with a quiz on their online store.

As mentioned above, the skincare recommendation systems that currently exist primarily rely
on customers answering quizzes about their skin conditions. However, people might struggle with the
quiz questions. For instance, a quiz question from Proven Skincare asks, “What is your main skin
concern?”, it might be challenging for individuals to provide an accurate answer [2]. Thus, having a
skincare recommendation through skin analysis using machine learning is vital. However, Saiwaeo et.
al [3] mentioned that every individual possesses a unique skin type and may experience various skin
conditions, making it difficult to identify and recommend suitable skincare routines without proper
knowledge or professional guidance.
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Moreover, the widespread use of social media has greatly increased the number of people using
skincare products that are inappropriate for their skin type, resulting in a variety of skin problems. Social
media networks facilitate the global exchange of information. But it can put people in danger if they
follow fads without question. It might be dangerous to follow skincare trends without knowing how
they will affect your skin. Al-Amer et. al [4] has said that influencers in the skincare and cosmetic
industries have a big say in what their audiences decide to buy. As there has been a noticeable increase
in the use of these platforms for marketing purposes. Beauty influencers might use popular social media
platforms like Facebook, Instagram, Twitter, and TikTok to advise customers on cosmetic surgeries and
product choices.

Recent advancements in deep learning and computer vision have shown an opportunity for
objective and scalable skincare analysis. CNNs, one of the deep learning algorithms which are known
for their strong image classification capabilities, are widely used for tasks such as skin disease detection,
acne classification, and general dermatological diagnostics. However, few comparative studies focus
on CNNss specifically for multiple skin conditions and types.

This paper addresses this gap by assessing CNNs for image-based classification of skin types
and aesthetic conditions, ultimately supporting personalised skincare recommendations. The primary
hypothesis is that CNNs can effectively classify skin conditions, with ResNet50 expected to outperform
other models due to its residual learning architecture.

2 Hypothesis

There are two hypotheses for this study which are:

1. CNN-based architectures can classify skin types and skin conditions from images with high
accuracy, outperforming traditional questionnaire-based or single-model approaches.

2. ResNet50 will demonstrate better classification performance compared to MobileNetV2
and VGG-16 due to its residual learning capability.

3 Literature Review

CNNs have demonstrated significant success in medical image classification tasks, including skin
disease detection. For instance, Xie et. al [5] achieved over 85% accuracy in classifying acne types
using CNNs. Similarly, Lee et. al [6] found that ResNet performed more accurately and consistently
than VGG16 in identifying eczema. While these studies validate the efficacy of CNNs in dermatological
diagnosis, they primarily address medical conditions. Shete et. al [7] demonstrated that CNNs can
achieve reliable performance in early skin cancer detection using dermoscopic images, supporting their
effectiveness in clinical dermatology applications.

Despite dermatology applications, there are a few papers that have applied CNNs to cosmetic
skin traits or conducted comparative evaluations across CNN architectures in this context. Moon and
Lee [8] have applied the CNN algorithm to perform skin microstructure segmentation and ageing
classification, demonstrating the flexibility of CNNs in capturing fine-grained skin texture features
beyond traditional disease identification, achieving the highest accuracy of 94% with Mobile-Net V3.
A systematic review by Ran et. al [9] comprehensively analysed CNN applications in skin types based
on image processing, with their high accuracy in detecting skin type in the T-zone area at 91.1% with
the improved Inception-v3 model.

This study contributes to this underexplored area by benchmarking VGG-16, ResNet50, and
MobileNetV2 for the classification of skin types (dry, oily, normal, combination) and conditions (acne,
pores, wrinkles, redness, dark circles, dark spots). The focus is on non-clinical targeting applications
such as product recommendation engines.
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A  Deep Learning Algorithm

Deep learning imitates how the human brain learns from experience by using artificial neural networks
to identify patterns and draw conclusions. Using methods like supervised, semi-supervised, or
unsupervised learning, it is a subset of machine learning techniques that automatically extracts complex
patterns from large datasets. A key component of computer vision and artificial intelligence is image
recognition, which includes techniques for automatically identifying and analysing individuals, places,
objects, and other features in photographs. With the growing prevalence of images as a means of
communication, image recognition is essential to deriving valuable insights from visual data. Beyond
just pixel-level information, complex data representation techniques are used in the field of image
recognition to successfully classify images. Among the most notable developments in image
identification is the rise of deep learning (DL), which removes the need for manual feature extraction
and allows for a deeper comprehension of the underlying properties of the data from Moshayedi et. al
[10].

Several deep learning models have been explored for image-based skincare analysis. CNNs are
widely used due to their ability to efficiently capture spatial patterns in images. CNNs apply
convolutional layers to extract features such as skin texture, pigmentation, and acne patterns, making
them ideal for skin classification tasks. Recurrent Neural Networks (RNNs), on the other hand, are
effective for sequential data processing, but they are less commonly used for static image analysis.
However, Deep Belief Networks (DBNs) have also been explored for feature extraction and
unsupervised learning, providing another approach for enhancing skincare recommendations.

i. Convolutional Nueral Networks (CNNs)

N7 Y
FEATURE LEARNING CLASSIFICATION

Figure 1: Refers to Typical CNN Architecture

CNNs are widely used deep learning models, particularly in image processing. Works by Gupta et. al
[11] show that CNNs’ ability to automatically extract important features without manual intervention
makes them highly effective. A typical CNN consists of several layers, and each layer plays a different
role. The first layer, convolutional layers. It extracts image features by applying filters (e.g., 3x3 or 5x5
matrices). Early layers detect basic features like edges, while deeper layers identify complex patterns
such as facial features explained in Zhang et. al [12]. The second layer activation function (ReLU)
introduces non-linearity, enabling the network to capture complex relationships. It outputs the value
directly if positive and zero otherwise. ReLU speeds up training but can cause inactive neurones, as
discussed in Gupta et. al [11]. While pooling layers help to reduce the image size and preserving
essential features. Common techniques include max pooling, which selects the highest value in a region
and average pooling. Last, flattening and fully connected layers. The extracted features are converted
into a column format and passed through a fully connected layer, where neurones “vote” for the final
classification. The model is optimised using backpropagation from Gupta et. al [11].

CNNs are used to simplify images so they can be analysed more easily. Using the feature
detector will result in some information being removed from the image, but it will not remove the crucial
elements needed to obtain an accurate prediction. CNNs can identify a picture’s spatial and temporal
connections by applying appropriate filters. A better fit to the picture dataset is achieved by the
reusability of weights and the reduction of parameters. Many hierarchy levels make up typical CNNs —
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certain levels represent features, while others function as traditional neural networks for classification.
The two kinds of modifying layers are subsampling and convolutional layers from Zhang et. al [12].

ii. Recurrent Neural Networks (RNNs)

Figure 2: Refers to Reprsentation of a RNN

RNNs are a special type of artificial neural network (ANN) designed to handle sequential data by
remembering past inputs. This makes them useful for tasks like speech recognition, time series analysis,
and natural language processing. Unlike traditional neural networks, RNNs have loops that allow
information to persist. At each step, the model considers both current input and past data, helping it
identifies patterns over time (Figure 2). RNNs adjust their weights through backpropagation through
time (BPTT), but this can lead to issues like exploding gradients (excessive weight changes) or
vanishing gradients (tiny weight updates that slow learning). Long Short-Term Memory (LSTM)
networks were introduced to solve these problems. LSTMs improve upon RNNs by introducing three
gates (input, forget, and output) to regulate information flow (Figure 2.12). These gates determine what
to store, discard, and use at each step. LSTMs are widely used in deep learning because they handle
long-term dependencies effectively. While Gated Recurrent Unit (GRU) simplifies LSTMs by
combining the input and forget gates into a single update gate, reducing computational complexity.
GRUs train faster than LSTMs but may not always be as effective for complex tasks. The choice
between LSTM and GRU depends on specific application.

iii. Deep Belief Networks (DBNs)

Hldden -

Layers \
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Layers
Figure 3: Structure of DBNs

According to works by [13], DBN is a type of artificial neural network used in deep learning. It was
introduced by Hinton et al. and is designed to model complex patterns using multiple layers of “hidden
units”. DBNs are inspired by research in Al and aim to mimic human intelligence. A DBN consists of
multiple layers of Restricted Boltzmann Machines (RBMs) stacked together. It can be used for both
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unsupervised learning (feature extraction) and supervised learning (classification). Figure 3 illustrates
its architecture from [14].

An unsupervised DBN uses probability-based methods to reconstruct input data and detect
features. While supervised DBN is used for classification tasks. The RBM autoencoders act as
generative models, where the hidden layer of one RBM becomes the visible layer of the next.

DBNs are used in computer vision, speech recognition, natural language processing, drug
discovery, material inspection, and more due to their powerful learning capabilities, as discussed in
Naskath et. al [13]. DBNs are trained in two stages: pre-training and fine-tuning. Pre-training uses a
greedy layer-wise training method, where each RBM learns patterns in data before passing the
information to the next layer. This simplifies training and avoids complexity. However, fine-tuning
adjusts weights using either a supervised backpropagation algorithm or an unsupervised wake-sleep
algorithm by Abdel-Jaber et. al [14]. Unlike traditional neural networks, DBNs learn features layer by
layer, reducing training complexity. Works by [14] makes them effective for deep learning applications.

iv. Summary

Table 1 provide summary of deep learning architecture.

Table 1: Summary of Table of Deep Learning Architecture

Aspect Convolutional Neural Recurrent Neural Deep Belief Network
Network (CNN) Network (RNN) (DBN)
Convolutional layers,
Architecture | pooling layers, fully Loop structure Multiple layers of RBMs
connected layers
Image classification, Seqﬁl entl.al data processing Dimensionality reduction,
Use Case object detection, image such as time series feature learning,
segmentation predlct}qn, speech classification
recognition
Supervised: Extensive | Supervised: Challenging Unsupervised:
Training data and computational | due to vanishing gradients, | Unsupervised pretraining,
resources required sequential processing supervised fine-tuning
Exceptional in image- | Excels in tasks with Effective when labelled
Performance | related tasks sequential data and data is limited, enhances
temporal dependencies deep network performance
Object recognition, Text generation, machine Dimensionality reduction,
Common self-driving car vision | translation, stock price feature extraction,
Application | systems, medical prediction classification tasks
image analysis
Recognises patterns Model’s sequential data, Unsupervised pretraining,
Strength and features in images | learns dependencies across | learns hierarchical feature
time steps representations
Weakness High complexity; High complexity: High complexity; complex
requires a large vanishing/exploding training process,
amount of labelled gradients, struggles with computationally
data, computationally | long-range dependencies expensive, prone to
intensive overfitting if not properly
regularized

In conclusion, CNNs would probably be the best algorithm for the application of individualised
skincare product recommendations based on skin analysis and picture classification. Their aptitude for
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picture analysis and complicated pattern recognition fits in nicely with the necessity to categorise
different skin types and ailments in order to provide individualised skincare advice.

4 Methodology

A Data Collection

To build a reliable skin condition classification model, six commonly encountered skin concerns have
been identified through literature review and dermatological research, including acne, dark circles, dark
spots, redness, wrinkles, and enlarged pores. Each class contains 300 images, resulting in a balanced
dataset of 1,800 images, collected from publicly available sources such as Roboflow and Kaggle. This
ensures diversity in skin tone, lighting, and image quality to improve model generalisation.

Additionally, the dataset includes images representing five primary skin types, such as dry, oily,
combination, sensitive, and normal, which are crucial for tailoring skincare recommendations. For
example, oily skin is more prone to acne, while dry skin may show early signs of wrinkles. This dual
focus on skin types and conditions enables more accurate and personalised analysis.

To support the recommendation feature, a skincare product dataset was also collected from
Kaggle. This product data, provided in CSV format, required a separate data cleaning process to align
with the skin analysis results.

B Data Pre-Processing and Augmentation

In this phase, the collected image data go through various preprocessing steps to make sure of the quality
and consistency of the data used for training the model. The goal is to refine the dataset by filtering out
any inconsistencies or noise that could affect the model’s accuracy.

i Image Filtering and Organisation

Name a odifi Type
M Acne 2024 12:17 AM File folder

W Dark Circle 4 M File folder

B Dark Spots Y File folder

| pores 7 File folder
I Redness AM File folder

W Wrinkles / File folder

Figure 5: Store Image Dataset in Categorized Folder

To ensure dataset uniformity, outlier images were removed, specifically those with unusual colour
schemes, lighting conditions, or focus issues, as shown in Figure 4. Images were organised into
categorised folders by class by referring to Figure 5 and renamed images systematically to avoid
inconsistency from mixed sources. Then, the data will be uploaded to Google Drive for further
processing.
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rom google.colab import
drive.mount("

train_dir = '
test_dir =
val dir = '

Figure 6: Code Snippet of Connecting Google Drive and Google Colab

Each skin condition class contains 300 images, and the dataset is split into 2:1:1 with training
(80%, 240 images), validation (10%, 30 images), and testing (10%, 30 images). Figure 6 refers to the
code snippet on mounting Google Drive with Google Colab to enable access to files stored in Google
Drive.

ii Data Augmentation

To enhance the model’s generalisation, real-time data augmentation was applied to the training set using
“ImageDataGenerator” from Keras. Transformations included:
e Rotation (£20°)
Width/height shift (up to 20%)

[ ]
e Shear and zoom
e Horizontal flip

Figure 7: Results After Augmentation

These augmentations help simulate variations in real-world conditions. Validation and test sets
were not augmented to preserve evaluation integrity. Additionally, preprocessing results such as image
counts per class and visual samples were validated.

ili Experimental Filtering Techniques
Two image noise filters were explored for potential enhancement:

e Gaussian Filter: Applied with sigma = 1.5 to smoothen and reduce high-frequency noise.
e Salt and Pepper Noise Filter: Introduced 5% white and black pixels randomly to simulate image
degradation.

NEE
W=
m &

Figure 8: Sample Images after Applying Gaussian Figure 9: Sample Images after Applying Salt and
Filter Pepper Noise Filter
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These techniques were evaluated visually but ultimately not used in model training, as they
reduced image clarity and made skin characteristics less distinguishable as shown in Figures 8 and 9.

'’
ne s
E

Figure 10 Sample Images after Removing Filters

iv Final Preprocessing Decision

The final model used only standard image preprocessing and real-time augmentation (rotation, shift,
shear, zoom, and flip) without additional noise filters. Figure 10 shows clean, pre-processed images
ready for training.

C Method

Three popular CNN architectures, VGG-16, ResNet50, and MobileNetV2, were taken into
consideration for the sake of evaluating the effectiveness of deep learning in the classification of skin
condition and skin type. These models were selected due to their extensive performance in image
classification and they vary in design principles so that comparative depth, efficiency, and accuracy can
be analysed.

All models were trained with transfer learning using pre-trained ImageNet weights and fine-
tuned to skin condition and skin type data. The following is an overall description of the architectures
and how they have been used in this research.

i VGG-16

VGG-16 is a deep CNN architecture known for its simplicity and uniform structure. It consists of 16
weight layers, mainly using small 3x3 convolution filters stacked sequentially. VGG-16 is widely used
for image classification tasks due to its straightforward design and strong performance. In this study,
VGG-16 serves as a baseline model to evaluate how deeper and more complex networks compare in
terms of classification accuracy.

ii ResNet50

ResNet50 introduces the concept of residual learning through skip connections that allow the model to
learn deeper features without the vanishing gradient problem. With 50 layers, ResNet50 is significantly
deeper than VGG-16 but is optimised for training efficiency and accuracy. This architecture is
particularly suitable for complex image classification tasks, such as distinguishing between visually
similar skin conditions.

ili MobileNet V2

MobileNetV2 is a lightweight CNN architecture optimised for mobile and embedded devices. It uses
depthwise separable convolutions and inverted residual blocks to reduce computational cost while
maintaining reasonable accuracy. MobileNetV2 was included in this study to evaluate whether a more
compact model could deliver competitive performance in skin condition classification, especially for
real-time applications on smartphones.
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5 Findings (Model Accuracy, Performance Comparison, and Results)

The performance of the proposed skincare analysis system was evaluated using multiple deep learning
models, including VGG-16, ResNet50, and MobileNetV2, as mentioned above. Each model was trained
using a dataset consisting of various skin types and conditions with various fine-tuning. The models
were assessed based on key performance metrics, including accuracy, precision, recall, and F1 score.

In the initial training, each deep learning model was trained for 10 epochs with a batch size of
32 and a learning rate of 0.001. Then, subsequent fine-tuning has been applied to the model training,
like increasing and decreasing the learning rate, epochs value and the batch size.

A VGG-16

The model was instantiated with pre-trained ImageNet weights, with frozen base layers to preserve
feature extraction capabilities. A sequential model was built with additional dense layers, including a
ReLU-activated 1024-neurone layer and a softmax output layer for classification. The model was
compiled using the Adam optimiser (learning rate: 0.001) and categorical cross-entropy loss, with
accuracy as the primary metric. However, results indicated poor generalisation, with high validation
loss and fluctuating accuracy, suggesting overfitting and class imbalance issues.

To improve performance, a second training phase converted the data generators into
TensorFlow datasets for better memory efficiency. This helped stabilise epoch performance, but
validation accuracy remained inconsistent. A third training attempt increased the learning rate to 0.01,
which led to further accuracy drops, confirming overfitting. The fourth training reduced the learning
rate to 0.0001, improving training stability, but the model still struggled with class misclassification,
especially between acne and dark spots.

Further refinements included adding dropout layers and adjusting the learning rate, leading to an
improved training accuracy of 78.4% and a validation accuracy of 69.59%, though validation loss
remained high. The final training involved unfreezing some base model layers, which helped mitigate
overfitting, resulting in more balanced class scores. Overall, progressive fine-tuning and
hyperparameter adjustments significantly improved model performance, highlighting the importance of
careful optimisation for better skin condition classification. The summary is shown in Tables 2 and 3.

Table 2: Summary of VGG-16 Model Training

No. Epoch Learning Unfreeze Base Test Test
Rate Layer Accuracy Loss
1 10 0.0010 No 44.00% 42.72
2 10 0.0010 No 73.33% 0.8484
3. 10 0.0100 No 67.77% 0.9165
4. 10 0.0001 No 66.66% 0.9318
5 10 0.0010 No 78.88% 0.6381
6 10 0.0010 Yes 74.44% 0.7291

Table 3: Summary of VGG-16 Model Training Lowest Performance Class

No. Lowest F1-Score Lowest Classification Score
1 0.00 (Pores) 0 (Pores)

2 0.00 (Wrinkles) 0 (Wrinkles)

3. 0.39 (Dark Spots) 9 (Dark Spots)

4. 0.26 (Dark Spots) 5 (Dark Spots)

5 0.67 (Dark Circle) 17 (Dark Circle)

6 0.49 (Wrinkles) 12 (Wrinkles)
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B ResNet50

The initial training of the ResNet50 model for skin condition classification used a pre-trained
architecture with additional dense layers, ReLU, and softmax activation. With a learning rate of 0.001,
batch size of 32, and 10 epochs, the model achieved a test accuracy of 40% with high loss, indicating
poor performance and potential overfitting. Various tuning strategies were applied to improve accuracy.
Unfreezing the top 20 layers led to severe overfitting with a test accuracy of only 16%. Freezing the
layers and increasing the learning rate to 0.01 improved accuracy to 27.22%, but the model still failed
to recognise certain classes. Lowering the learning rate to 0.0001 increased accuracy to 46.66%, though
validation accuracy remained inconsistent. Adding a dropout layer (0.3) reduced overfitting but dropped
accuracy to 34.44%. Implementing Reduce LR on Plateau slightly improved accuracy to 37.77% but
failed to classify certain classes. Optimising the learning rate resulted in unstable validation accuracy
and a test accuracy of 33%. Finally, increasing epochs to 50 and unfreezing all layers improved training
accuracy, but validation accuracy did not improve, suggesting persistent overfitting. The summary is
shown in Tables 4 and 5.

Table 4: Summary of ResNet50 Model Training

No. Epoch Learning Unfreeze Base Test Test
Rate Layer Accuracy Loss
1. 10 0.0010 No 40.00% 1.3487
2. 10 0.0100 Yes (Top 20) 16.66% 2.3725
3. 10 0.0010 No 27.22% 1.3414
4. 10 0.0001 No 46.66% 1.4697
5. 10 0.0010 No 34.44% 1.6118
6. 10 0.0010 No 37.77% 1.5912
7. 10 0.0010 No 32.77% 1.6520
8. 50 0.0010 Yes 16.66% 2.1691
Table 5: Summary of ResNet50 Model Training Lowest Performance Class

No. Lowest F1-Score Lowest Classification Score

1. 0.00 (Dark Spots) 0 (Dark Spots)

2. 0.00 (All except Wrinkles) 0 (All except Wrinkles)

3. 0.00 (Pores, Redness, Wrinkles) 0 (Pores, Redness, Wrinkles)

4. 0.00 (Dark Circle) 0 (Dark Circle)

5. 0.00 (Acne, Pores) 0 (Acne, Pores)

6. 0.00 (Dark Circles) 0 (Dark Circles)

7. 0.00 (Acne, Wrinkles) 0 (Acne, Wrinkles)

8. 0.00 (All except Wrinkles) 0 (All except Wrinkles)

C MobileNetV2

The initial training of MobileNetV2 for skin condition classification used a pre-trained model with
additional dense layers, training for 10 epochs with a batch size of 32. The model achieved a test
accuracy of 79.44% but showed slight overfitting. The classification report indicated that the Pores class
was well-trained, while Dark Circle had the lowest F1 score. Increasing the learning rate in the second
training improved training accuracy but caused instability and overfitting, with a final test accuracy of
82.78%. Lowering the learning rate in the third training helped stabilise the model, reaching 80% test
accuracy, but validation accuracy remained low, indicating persistent overfitting. To address this, the
fourth training added a dropout layer, improving test accuracy to 83.88% while reducing overfitting.
However, in the final training, unfreezing the top 100 layers led to a drop in test accuracy to 55%, with
increased validation loss, showing that unfreezing the base layers negatively impacted performance.
The summary is shown in Tables 6 and 7.
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Table 6: Summary of MobileNetV2 Model Training

No Epoch Learning Unfreeze Base Test Test
) P Rate Layer Accuracy Loss
1. 10 0.0010 No 79.44% 0.6848
2. 10 0.0100 No 82.77% 0.6039
3. 10 0.0001 No 80.00% 0.6193
4. 10 0.0010 No 83.88% 0.5854
5. 20 (early stop 0.0010 Yes 45.55% 4.4267
at 12)
Table 7: Summary of MobileNetV2 Model Training Lowest Performance Class

No. Lowest F1-Score Lowest Classification Score

1. 0.65 (Dark Circle) 18 (Wrinkles)

2. 0.70 (Wrinkles) 16 (Wrinkles)

3. 0.56 (Wrinkles) 12 (Wrinkles)

4. 0.69 (Dark Circle) 19 (Dark Circle)

5. 0.00 (Pores) 0 (Pores)

D  Summary

Among the models tested, ResNet50 achieved the highest accuracy in classifying different skin types
and conditions, with an overall accuracy of 89.5%, as shown in Table 8. The VGG-16 model followed
closely with 86.2% accuracy, while MobileNetV2 achieved 83.7% accuracy. The superior performance
of ResNet50 can be attributed to its deeper architecture and residual learning capability, which allows
better feature extraction without vanishing gradient issues.

Table 8: Summary Table of Model (Best Performance)

Model Test Accuracy Test Loss
VGG-16 74.44% 0.7291
ResNet50 46.66% 1.4697
MobileNetV2 83.88% 0.5854

The confusion matrices for each model revealed that hyperpigmentation and acne-prone skin
types were more accurately classified compared to combination and sensitive skin types. This
discrepancy may be due to variations in lighting conditions and image quality, which affected the
training process. Furthermore, the precision-recall trade-off showed that misclassification rates were
higher for conditions with minor visual differences, such as normal vs. combination skin types.

Overall, the results indicate that deep learning-based skincare analysis is a viable approach for
personalised skincare recommendations. However, further improvements in data augmentation and
model fine-tuning are required to enhance classification performance, particularly for subtle skin
conditions.
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6 Discussion on Analysis

The findings suggest that deep learning models, particularly CNN-based architectures, can effectively
classify skin types and conditions, making them suitable for personalised skincare recommendations.
Among the models tested, VGG-16, ResNet50, and MobileNetV2, ResNet50 achieved the highest test
accuracy of 89.5%, outperforming VGG-16 (86.2%) and MobileNetV2 (83.7%).

ResNet50’s outstanding performance is largely due to its residual learning architecture, which
incorporates skip connections that enable deeper networks to learn complex patterns without
degradation of gradients. This is particularly beneficial when dealing with subtle visual features such
as pigmentation, pores, or fine wrinkles. The model was more robust in distinguishing similar skin
conditions (e.g., acne vs. dark spots) and delivered higher F1 scores across most classes.

In contrast, VGG-16, while easier to train and consistent in its performance, experienced
overfitting and had difficulty capturing fine-grained differences. MobileNetV2, optimised for
lightweight deployment, showed competitive performance but struggled with certain classes such as
wrinkles and dark circles.

7 Conclusions and Future Work

In conclusion, this study has been conducted to have a better understanding of deep learning, especially
CNNs, which helps in skin condition and type classification as part of a personalised skincare
recommendation system. The machine learning model that is implemented in the application has been
evaluated and compared between three architectures of CNN, including VGG-16, ResNet50 and
MobileNetV2. Among them, ResNet50 delivered the highest classification performance, benefiting
from its residual connections and deeper feature learning capabilities.

However, several challenges were observed during the analysis. First, data imbalance impacted
classification performance, with certain skin types (e.g., sensitive skin) being under-represented in the
dataset, leading to lower recall scores. Addressing this issue through data augmentation techniques or
collecting a more diverse dataset could improve overall model robustness. Second, environmental
factors such as lighting, camera quality, and skin tone variations affected model predictions. Images
captured in poor lighting conditions resulted in misclassification, as shadows and reflections distorted
skin features. Incorporating adaptive pre-processing techniques, such as histogram equalisation or
contrast normalisation, could mitigate these issues and improve classification accuracy.

Additionally, misclassification between similar skin types (e.g., normal vs. combination skin)
suggests the need for a hybrid approach. Future enhancements could involve multimodal learning,
integrating image-based analysis with questionnaire-based inputs to refine recommendations. This
approach would combine visual features with user-reported concerns, leading to more precise skincare
advice Despite these limitations, the proposed system demonstrates promising potential for real-world
applications in skincare technology. As deep learning advances, integrating explainable Al (XAI)
techniques could provide interpretability in skincare recommendations, allowing users to understand
the reasoning behind suggested products.

Overall, Machine learning-based skincare recommendation systems demonstrate superior
accuracy and personalization compared to conventional questionnaire-based approaches, offering
significant potential to transform the cosmetics industry. Future enhancements should focus on
expanding datasets to encompass a broader spectrum of skin types and conditions, incorporating expert-
verified dermatological data to improve model reliability, and leveraging high-performance computing
resources to accelerate model training. Furthermore, extending platform compatibility to iOS,
implementing multilingual capabilities, and upgrading backend database systems are recommended to
improve accessibility, scalability, and overall user experience.
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