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Abstract: Skincare is an essential aspect of personal care, but selecting suitable products remains 
challenging due to individual variations in skin type and condition. Existing skincare recommendation 
systems rely on questionnaires, which may lead to inaccurate recommendations. This study explores 
the application of machine learning algorithms, particularly Convolutional Neural Networks (CNNs), 
for automated skin analysis and personalised skincare recommendations. By analysing images of 
users’ skin, the system can classify skin types, detect conditions such as acne or dryness, and suggest 
suitable products. The study evaluates different deep learning models, including VGG-16, ResNet-50, 
and MobileNetV2, comparing their accuracy and efficiency. Experimental results indicate that the 
proposed model achieves high accuracy in classifying skin conditions, demonstrating the potential of 
machine learning in revolutionising personalised skincare solutions.       
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1 Introduction 
 
The global skincare industry continues to grow rapidly, driven by increasing consumer demand for 
customised solutions. According to Rodgers [1], 99% of 1,000 women surveyed worldwide reported 
they would prioritise investment in skincare. Despite this trend, most current recommendation systems 
depend on self-assessment questionnaires or dermatological consultations, which are time-intensive and 
subject to user interpretation. Though there are not many skincare recommendation systems on the 
market right now, and most of them are limited to the skincare brand’s website where customers can 
personalise products by answering questions about their skin conditions but not using artificial 
intelligence (AI) analysis. Based on personal knowledge, Proven, SkinKick, Sephora, and Clinique are 
examples of having skincare personalisation service with a quiz on their online store.      

As mentioned above, the skincare recommendation systems that currently exist primarily rely 
on customers answering quizzes about their skin conditions. However, people might struggle with the 
quiz questions. For instance, a quiz question from Proven Skincare asks, “What is your main skin 
concern?”, it might be challenging for individuals to provide an accurate answer [2]. Thus, having a 
skincare recommendation through skin analysis using machine learning is vital. However, Saiwaeo et. 
al [3] mentioned that every individual possesses a unique skin type and may experience various skin 
conditions, making it difficult to identify and recommend suitable skincare routines without proper 
knowledge or professional guidance.      
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Moreover, the widespread use of social media has greatly increased the number of people using 
skincare products that are inappropriate for their skin type, resulting in a variety of skin problems. Social 
media networks facilitate the global exchange of information. But it can put people in danger if they 
follow fads without question. It might be dangerous to follow skincare trends without knowing how 
they will affect your skin. Al-Amer et. al [4] has said that influencers in the skincare and cosmetic 
industries have a big say in what their audiences decide to buy. As there has been a noticeable increase 
in the use of these platforms for marketing purposes. Beauty influencers might use popular social media 
platforms like Facebook, Instagram, Twitter, and TikTok to advise customers on cosmetic surgeries and 
product choices.  

Recent advancements in deep learning and computer vision have shown an opportunity for 
objective and scalable skincare analysis. CNNs, one of the deep learning algorithms which are known 
for their strong image classification capabilities, are widely used for tasks such as skin disease detection, 
acne classification, and general dermatological diagnostics. However, few comparative studies focus 
on CNNs specifically for multiple skin conditions and types.      

This paper addresses this gap by assessing CNNs for image-based classification of skin types 
and aesthetic conditions, ultimately supporting personalised skincare recommendations. The primary 
hypothesis is that CNNs can effectively classify skin conditions, with ResNet50 expected to outperform 
other models due to its residual learning architecture. 

2 Hypothesis 
 
There are two hypotheses for this study which are: 

1. CNN-based architectures can classify skin types and skin conditions from images with high 
accuracy, outperforming traditional questionnaire-based or single-model approaches. 

2. ResNet50 will demonstrate better classification performance compared to MobileNetV2 
and VGG-16 due to its residual learning capability. 

3 Literature Review 
 
CNNs have demonstrated significant success in medical image classification tasks, including skin 
disease detection. For instance, Xie et. al [5] achieved over 85% accuracy in classifying acne types 
using CNNs. Similarly, Lee et. al [6] found that ResNet performed more accurately and consistently 
than VGG16 in identifying eczema. While these studies validate the efficacy of CNNs in dermatological 
diagnosis, they primarily address medical conditions. Shete et. al [7] demonstrated that CNNs can 
achieve reliable performance in early skin cancer detection using dermoscopic images, supporting their 
effectiveness in clinical dermatology applications.  

Despite dermatology applications, there are a few papers that have applied CNNs to cosmetic 
skin traits or conducted comparative evaluations across CNN architectures in this context. Moon and 
Lee [8] have applied the CNN algorithm to perform skin microstructure segmentation and ageing 
classification, demonstrating the flexibility of CNNs in capturing fine-grained skin texture features 
beyond traditional disease identification, achieving the highest accuracy of 94% with Mobile-Net V3. 
A systematic review by Ran et. al [9] comprehensively analysed CNN applications in skin types based 
on image processing, with their high accuracy in detecting skin type in the T-zone area at 91.1% with 
the improved Inception-v3 model.       

This study contributes to this underexplored area by benchmarking VGG-16, ResNet50, and 
MobileNetV2 for the classification of skin types (dry, oily, normal, combination) and conditions (acne, 
pores, wrinkles, redness, dark circles, dark spots). The focus is on non-clinical targeting applications 
such as product recommendation engines. 
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A Deep Learning Algorithm 
 
Deep learning imitates how the human brain learns from experience by using artificial neural networks 
to identify patterns and draw conclusions. Using methods like supervised, semi-supervised, or 
unsupervised learning, it is a subset of machine learning techniques that automatically extracts complex 
patterns from large datasets. A key component of computer vision and artificial intelligence is image 
recognition, which includes techniques for automatically identifying and analysing individuals, places, 
objects, and other features in photographs. With the growing prevalence of images as a means of 
communication, image recognition is essential to deriving valuable insights from visual data. Beyond 
just pixel-level information, complex data representation techniques are used in the field of image 
recognition to successfully classify images. Among the most notable developments in image 
identification is the rise of deep learning (DL), which removes the need for manual feature extraction 
and allows for a deeper comprehension of the underlying properties of the data from Moshayedi et. al 
[10]. 

Several deep learning models have been explored for image-based skincare analysis. CNNs are 
widely used due to their ability to efficiently capture spatial patterns in images. CNNs apply 
convolutional layers to extract features such as skin texture, pigmentation, and acne patterns, making 
them ideal for skin classification tasks. Recurrent Neural Networks (RNNs), on the other hand, are 
effective for sequential data processing, but they are less commonly used for static image analysis. 
However, Deep Belief Networks (DBNs) have also been explored for feature extraction and 
unsupervised learning, providing another approach for enhancing skincare recommendations. 

i. Convolutional Nueral Networks (CNNs) 
 

 
Figure 1: Refers to Typical CNN Architecture 

CNNs are widely used deep learning models, particularly in image processing. Works by Gupta et. al 
[11] show that CNNs’ ability to automatically extract important features without manual intervention 
makes them highly effective. A typical CNN consists of several layers, and each layer plays a different 
role. The first layer, convolutional layers. It extracts image features by applying filters (e.g., 3×3 or 5×5 
matrices). Early layers detect basic features like edges, while deeper layers identify complex patterns 
such as facial features explained in Zhang et. al [12]. The second layer activation function (ReLU) 
introduces non-linearity, enabling the network to capture complex relationships. It outputs the value 
directly if positive and zero otherwise. ReLU speeds up training but can cause inactive neurones, as 
discussed in Gupta et. al [11]. While pooling layers help to reduce the image size and preserving 
essential features. Common techniques include max pooling, which selects the highest value in a region 
and average pooling. Last, flattening and fully connected layers. The extracted features are converted 
into a column format and passed through a fully connected layer, where neurones “vote” for the final 
classification. The model is optimised using backpropagation from Gupta et. al [11]. 

CNNs are used to simplify images so they can be analysed more easily. Using the feature 
detector will result in some information being removed from the image, but it will not remove the crucial 
elements needed to obtain an accurate prediction. CNNs can identify a picture’s spatial and temporal 
connections by applying appropriate filters. A better fit to the picture dataset is achieved by the 
reusability of weights and the reduction of parameters. Many hierarchy levels make up typical CNNs – 
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certain levels represent features, while others function as traditional neural networks for classification. 
The two kinds of modifying layers are subsampling and convolutional layers from Zhang et. al [12].  

 

 

ii. Recurrent Neural Networks (RNNs) 
 

 
Figure 2: Refers to Reprsentation of a RNN 

RNNs are a special type of artificial neural network (ANN) designed to handle sequential data by 
remembering past inputs. This makes them useful for tasks like speech recognition, time series analysis, 
and natural language processing. Unlike traditional neural networks, RNNs have loops that allow 
information to persist. At each step, the model considers both current input and past data, helping it 
identifies patterns over time (Figure 2). RNNs adjust their weights through backpropagation through 
time (BPTT), but this can lead to issues like exploding gradients (excessive weight changes) or 
vanishing gradients (tiny weight updates that slow learning). Long Short-Term Memory (LSTM) 
networks were introduced to solve these problems. LSTMs improve upon RNNs by introducing three 
gates (input, forget, and output) to regulate information flow (Figure 2.12). These gates determine what 
to store, discard, and use at each step. LSTMs are widely used in deep learning because they handle 
long-term dependencies effectively. While Gated Recurrent Unit (GRU) simplifies LSTMs by 
combining the input and forget gates into a single update gate, reducing computational complexity. 
GRUs train faster than LSTMs but may not always be as effective for complex tasks. The choice 
between LSTM and GRU depends on specific application.     

iii. Deep Belief Networks (DBNs) 
 

 
Figure 3: Structure of DBNs 

According to works by [13], DBN is a type of artificial neural network used in deep learning. It was 
introduced by Hinton et al. and is designed to model complex patterns using multiple layers of “hidden 
units”. DBNs are inspired by research in AI and aim to mimic human intelligence. A DBN consists of 
multiple layers of Restricted Boltzmann Machines (RBMs) stacked together. It can be used for both 
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unsupervised learning (feature extraction) and supervised learning (classification). Figure 3 illustrates 
its architecture from [14]. 

An unsupervised DBN uses probability-based methods to reconstruct input data and detect 
features. While supervised DBN is used for classification tasks. The RBM autoencoders act as 
generative models, where the hidden layer of one RBM becomes the visible layer of the next.       

DBNs are used in computer vision, speech recognition, natural language processing, drug 
discovery, material inspection, and more due to their powerful learning capabilities, as discussed in 
Naskath et. al [13]. DBNs are trained in two stages: pre-training and fine-tuning. Pre-training uses a 
greedy layer-wise training method, where each RBM learns patterns in data before passing the 
information to the next layer. This simplifies training and avoids complexity. However, fine-tuning 
adjusts weights using either a supervised backpropagation algorithm or an unsupervised wake-sleep 
algorithm by Abdel-Jaber et. al [14]. Unlike traditional neural networks, DBNs learn features layer by 
layer, reducing training complexity. Works by [14] makes them effective for deep learning applications.       

 

iv. Summary 
 

Table 1 provide summary of deep learning architecture. 

 
Table 1: Summary of Table of Deep Learning Architecture 

Aspect Convolutional Neural 
Network (CNN) 

Recurrent Neural 
Network (RNN) 

Deep Belief Network 
(DBN) 

Architecture 
Convolutional layers, 
pooling layers, fully 
connected layers 

Loop structure Multiple layers of RBMs  

Use Case 
Image classification, 
object detection, image 
segmentation 

Sequential data processing 
such as time series 
prediction, speech 
recognition 

Dimensionality reduction, 
feature learning, 
classification 

Training 
Supervised: Extensive 
data and computational 
resources required 

Supervised: Challenging 
due to vanishing gradients, 
sequential processing 

Unsupervised: 
Unsupervised pretraining, 
supervised fine-tuning 

Performance 
Exceptional in image-
related tasks 

Excels in tasks with 
sequential data and 
temporal dependencies 

Effective when labelled 
data is limited, enhances 
deep network performance 

Common 
Application 

Object recognition, 
self-driving car vision 
systems, medical 
image analysis 

Text generation, machine 
translation, stock price 
prediction 

Dimensionality reduction, 
feature extraction, 
classification tasks 

Strength 
Recognises patterns 
and features in images 

Model’s sequential data, 
learns dependencies across 
time steps 

Unsupervised pretraining, 
learns hierarchical feature 
representations 

Weakness High complexity; 
requires a large 
amount of labelled 
data, computationally 
intensive 

High complexity: 
vanishing/exploding 
gradients, struggles with 
long-range dependencies 

High complexity; complex 
training process, 
computationally 
expensive, prone to 
overfitting if not properly 
regularized 

 
In conclusion, CNNs would probably be the best algorithm for the application of individualised 

skincare product recommendations based on skin analysis and picture classification. Their aptitude for 
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picture analysis and complicated pattern recognition fits in nicely with the necessity to categorise 
different skin types and ailments in order to provide individualised skincare advice.  

4 Methodology 

A Data Collection 
 

To build a reliable skin condition classification model, six commonly encountered skin concerns have 
been identified through literature review and dermatological research, including acne, dark circles, dark 
spots, redness, wrinkles, and enlarged pores. Each class contains 300 images, resulting in a balanced 
dataset of 1,800 images, collected from publicly available sources such as Roboflow and Kaggle. This 
ensures diversity in skin tone, lighting, and image quality to improve model generalisation.        

Additionally, the dataset includes images representing five primary skin types, such as dry, oily, 
combination, sensitive, and normal, which are crucial for tailoring skincare recommendations. For 
example, oily skin is more prone to acne, while dry skin may show early signs of wrinkles. This dual 
focus on skin types and conditions enables more accurate and personalised analysis.       

To support the recommendation feature, a skincare product dataset was also collected from 
Kaggle. This product data, provided in CSV format, required a separate data cleaning process to align 
with the skin analysis results. 

B Data Pre-Processing and Augmentation 
 

In this phase, the collected image data go through various preprocessing steps to make sure of the quality 
and consistency of the data used for training the model. The goal is to refine the dataset by filtering out 
any inconsistencies or noise that could affect the model’s accuracy. 

i    Image Filtering and Organisation 

 
Figure 4: Filtering Unusal Image 

 
Figure 5: Store Image Dataset in Categorized Folder 

To ensure dataset uniformity, outlier images were removed, specifically those with unusual colour 
schemes, lighting conditions, or focus issues, as shown in Figure 4. Images were organised into 
categorised folders by class by referring to Figure 5 and renamed images systematically to avoid 
inconsistency from mixed sources. Then, the data will be uploaded to Google Drive for further 
processing.     
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Figure 6: Code Snippet of Connecting Google Drive and Google Colab 

Each skin condition class contains 300 images, and the dataset is split into 2:1:1 with training 
(80%, 240 images), validation (10%, 30 images), and testing (10%, 30 images). Figure 6 refers to the 
code snippet on mounting Google Drive with Google Colab to enable access to files stored in Google 
Drive.  

ii    Data Augmentation 
 
To enhance the model’s generalisation, real-time data augmentation was applied to the training set using 
“ImageDataGenerator” from Keras. Transformations included: 

• Rotation (±20°) 
• Width/height shift (up to 20%) 
• Shear and zoom 
• Horizontal flip 

 
Figure 7: Results After Augmentation 

These augmentations help simulate variations in real-world conditions. Validation and test sets 
were not augmented to preserve evaluation integrity. Additionally, preprocessing results such as image 
counts per class and visual samples were validated. 

iii   Experimental Filtering Techniques 
 
Two image noise filters were explored for potential enhancement: 

• Gaussian Filter: Applied with sigma = 1.5 to smoothen and reduce high-frequency noise.  
• Salt and Pepper Noise Filter: Introduced 5% white and black pixels randomly to simulate image 

degradation. 

  
Figure 8: Sample Images after Applying Gaussian 

Filter 
Figure 9: Sample Images after Applying Salt and 

Pepper Noise Filter 
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These techniques were evaluated visually but ultimately not used in model training, as they 
reduced image clarity and made skin characteristics less distinguishable as shown in Figures 8 and 9. 

iv   Final Preprocessing Decision 
 

 
Figure 10 Sample Images after Removing Filters 

The final model used only standard image preprocessing and real-time augmentation (rotation, shift, 
shear, zoom, and flip) without additional noise filters. Figure 10 shows clean, pre-processed images 
ready for training.  

C Method 
 

Three popular CNN architectures, VGG-16, ResNet50, and MobileNetV2, were taken into 
consideration for the sake of evaluating the effectiveness of deep learning in the classification of skin 
condition and skin type. These models were selected due to their extensive performance in image 
classification and they vary in design principles so that comparative depth, efficiency, and accuracy can 
be analysed.     

All models were trained with transfer learning using pre-trained ImageNet weights and fine-
tuned to skin condition and skin type data. The following is an overall description of the architectures 
and how they have been used in this research. 

i   VGG-16 
 
VGG-16 is a deep CNN architecture known for its simplicity and uniform structure. It consists of 16 
weight layers, mainly using small 3x3 convolution filters stacked sequentially. VGG-16 is widely used 
for image classification tasks due to its straightforward design and strong performance. In this study, 
VGG-16 serves as a baseline model to evaluate how deeper and more complex networks compare in 
terms of classification accuracy. 

ii    ResNet50 
 
ResNet50 introduces the concept of residual learning through skip connections that allow the model to 
learn deeper features without the vanishing gradient problem. With 50 layers, ResNet50 is significantly 
deeper than VGG-16 but is optimised for training efficiency and accuracy. This architecture is 
particularly suitable for complex image classification tasks, such as distinguishing between visually 
similar skin conditions. 

iii   MobileNet V2 
 
MobileNetV2 is a lightweight CNN architecture optimised for mobile and embedded devices. It uses 
depthwise separable convolutions and inverted residual blocks to reduce computational cost while 
maintaining reasonable accuracy. MobileNetV2 was included in this study to evaluate whether a more 
compact model could deliver competitive performance in skin condition classification, especially for 
real-time applications on smartphones. 
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5 Findings (Model Accuracy, Performance Comparison, and Results) 
 
The performance of the proposed skincare analysis system was evaluated using multiple deep learning 
models, including VGG-16, ResNet50, and MobileNetV2, as mentioned above. Each model was trained 
using a dataset consisting of various skin types and conditions with various fine-tuning. The models 
were assessed based on key performance metrics, including accuracy, precision, recall, and F1 score. 

In the initial training, each deep learning model was trained for 10 epochs with a batch size of 
32 and a learning rate of 0.001. Then, subsequent fine-tuning has been applied to the model training, 
like increasing and decreasing the learning rate, epochs value and the batch size.      

A VGG-16 
 

The model was instantiated with pre-trained ImageNet weights, with frozen base layers to preserve 
feature extraction capabilities. A sequential model was built with additional dense layers, including a 
ReLU-activated 1024-neurone layer and a softmax output layer for classification. The model was 
compiled using the Adam optimiser (learning rate: 0.001) and categorical cross-entropy loss, with 
accuracy as the primary metric. However, results indicated poor generalisation, with high validation 
loss and fluctuating accuracy, suggesting overfitting and class imbalance issues.       

To improve performance, a second training phase converted the data generators into 
TensorFlow datasets for better memory efficiency. This helped stabilise epoch performance, but 
validation accuracy remained inconsistent. A third training attempt increased the learning rate to 0.01, 
which led to further accuracy drops, confirming overfitting. The fourth training reduced the learning 
rate to 0.0001, improving training stability, but the model still struggled with class misclassification, 
especially between acne and dark spots. 

Further refinements included adding dropout layers and adjusting the learning rate, leading to an 
improved training accuracy of 78.4% and a validation accuracy of 69.59%, though validation loss 
remained high. The final training involved unfreezing some base model layers, which helped mitigate 
overfitting, resulting in more balanced class scores. Overall, progressive fine-tuning and 
hyperparameter adjustments significantly improved model performance, highlighting the importance of 
careful optimisation for better skin condition classification. The summary is shown in Tables 2 and 3. 

    

Table 2: Summary of VGG-16 Model Training 

No. Epoch Learning 
Rate 

Unfreeze Base 
Layer 

Test 
Accuracy 

Test 
Loss 

1. 10 0.0010 No 44.00% 42.72 
2. 10 0.0010 No 73.33% 0.8484 
3. 10 0.0100 No 67.77% 0.9165 
4. 10 0.0001 No 66.66% 0.9318 
5. 10 0.0010 No 78.88% 0.6381 
6. 10 0.0010 Yes 74.44% 0.7291 

 

Table 3: Summary of VGG-16 Model Training Lowest Performance Class 
No. Lowest F1-Score Lowest Classification Score 
1.  0.00 (Pores) 0 (Pores) 
2.  0.00 (Wrinkles) 0 (Wrinkles) 
3.  0.39 (Dark Spots) 9 (Dark Spots) 
4.  0.26 (Dark Spots) 5 (Dark Spots) 
5.  0.67 (Dark Circle) 17 (Dark Circle) 
6.  0.49 (Wrinkles) 12 (Wrinkles) 
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B ResNet50 
 

The initial training of the ResNet50 model for skin condition classification used a pre-trained 
architecture with additional dense layers, ReLU, and softmax activation. With a learning rate of 0.001, 
batch size of 32, and 10 epochs, the model achieved a test accuracy of 40% with high loss, indicating 
poor performance and potential overfitting. Various tuning strategies were applied to improve accuracy. 
Unfreezing the top 20 layers led to severe overfitting with a test accuracy of only 16%. Freezing the 
layers and increasing the learning rate to 0.01 improved accuracy to 27.22%, but the model still failed 
to recognise certain classes. Lowering the learning rate to 0.0001 increased accuracy to 46.66%, though 
validation accuracy remained inconsistent. Adding a dropout layer (0.3) reduced overfitting but dropped 
accuracy to 34.44%. Implementing Reduce LR on Plateau slightly improved accuracy to 37.77% but 
failed to classify certain classes. Optimising the learning rate resulted in unstable validation accuracy 
and a test accuracy of 33%. Finally, increasing epochs to 50 and unfreezing all layers improved training 
accuracy, but validation accuracy did not improve, suggesting persistent overfitting. The summary is 
shown in Tables 4 and 5.     

Table 4: Summary of ResNet50 Model Training 

No. Epoch Learning 
Rate 

Unfreeze Base 
Layer 

Test 
Accuracy 

Test 
Loss 

1. 10 0.0010 No 40.00% 1.3487 
2. 10 0.0100 Yes (Top 20) 16.66% 2.3725 
3. 10 0.0010 No 27.22% 1.3414 
4. 10 0.0001 No 46.66% 1.4697 
5. 10 0.0010 No 34.44% 1.6118 
6. 10 0.0010 No 37.77% 1.5912 
7. 10 0.0010 No 32.77% 1.6520 
8. 50 0.0010 Yes 16.66% 2.1691 

 

Table 5: Summary of ResNet50 Model Training Lowest Performance Class 
No. Lowest F1-Score Lowest Classification Score 
1.  0.00 (Dark Spots) 0 (Dark Spots) 
2.  0.00 (All except Wrinkles) 0 (All except Wrinkles)  
3.  0.00 (Pores, Redness, Wrinkles) 0 (Pores, Redness, Wrinkles) 
4.  0.00 (Dark Circle) 0 (Dark Circle) 
5.  0.00 (Acne, Pores) 0 (Acne, Pores) 
6.  0.00 (Dark Circles) 0 (Dark Circles) 
7.  0.00 (Acne, Wrinkles) 0 (Acne, Wrinkles) 
8.  0.00 (All except Wrinkles) 0 (All except Wrinkles) 

C MobileNetV2 
 

The initial training of MobileNetV2 for skin condition classification used a pre-trained model with 
additional dense layers, training for 10 epochs with a batch size of 32. The model achieved a test 
accuracy of 79.44% but showed slight overfitting. The classification report indicated that the Pores class 
was well-trained, while Dark Circle had the lowest F1 score. Increasing the learning rate in the second 
training improved training accuracy but caused instability and overfitting, with a final test accuracy of 
82.78%. Lowering the learning rate in the third training helped stabilise the model, reaching 80% test 
accuracy, but validation accuracy remained low, indicating persistent overfitting. To address this, the 
fourth training added a dropout layer, improving test accuracy to 83.88% while reducing overfitting. 
However, in the final training, unfreezing the top 100 layers led to a drop in test accuracy to 55%, with 
increased validation loss, showing that unfreezing the base layers negatively impacted performance. 
The summary is shown in Tables 6 and 7.   
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Table 6: Summary of MobileNetV2 Model Training 

No. Epoch Learning 
Rate 

Unfreeze Base 
Layer 

Test 
Accuracy 

Test 
Loss 

1. 10 0.0010 No 79.44% 0.6848 
2. 10 0.0100 No 82.77% 0.6039 
3. 10 0.0001 No 80.00% 0.6193 
4. 10 0.0010 No 83.88% 0.5854 

5. 20 (early stop 
at 12) 0.0010 Yes 45.55% 4.4267 

 
Table 7: Summary of MobileNetV2 Model Training Lowest Performance Class 

No. Lowest F1-Score Lowest Classification Score 

1.  0.65 (Dark Circle) 18 (Wrinkles) 

2.  0.70 (Wrinkles) 16 (Wrinkles) 

3.  0.56 (Wrinkles) 12 (Wrinkles) 

4.  0.69 (Dark Circle) 19 (Dark Circle) 

5.  0.00 (Pores) 0 (Pores) 

D Summary 
 
Among the models tested, ResNet50 achieved the highest accuracy in classifying different skin types 
and conditions, with an overall accuracy of 89.5%, as shown in Table 8. The VGG-16 model followed 
closely with 86.2% accuracy, while MobileNetV2 achieved 83.7% accuracy. The superior performance 
of ResNet50 can be attributed to its deeper architecture and residual learning capability, which allows 
better feature extraction without vanishing gradient issues.       

Table 8: Summary Table of Model (Best Performance) 

Model Test Accuracy Test Loss 

VGG-16 74.44% 0.7291 

ResNet50 46.66% 1.4697 

MobileNetV2 83.88% 0.5854 

 

The confusion matrices for each model revealed that hyperpigmentation and acne-prone skin 
types were more accurately classified compared to combination and sensitive skin types. This 
discrepancy may be due to variations in lighting conditions and image quality, which affected the 
training process. Furthermore, the precision-recall trade-off showed that misclassification rates were 
higher for conditions with minor visual differences, such as normal vs. combination skin types. 

Overall, the results indicate that deep learning-based skincare analysis is a viable approach for 
personalised skincare recommendations. However, further improvements in data augmentation and 
model fine-tuning are required to enhance classification performance, particularly for subtle skin 
conditions. 
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6 Discussion on Analysis 
 

The findings suggest that deep learning models, particularly CNN-based architectures, can effectively 
classify skin types and conditions, making them suitable for personalised skincare recommendations. 
Among the models tested, VGG-16, ResNet50, and MobileNetV2, ResNet50 achieved the highest test 
accuracy of 89.5%, outperforming VGG-16 (86.2%) and MobileNetV2 (83.7%).  

ResNet50’s outstanding performance is largely due to its residual learning architecture, which 
incorporates skip connections that enable deeper networks to learn complex patterns without 
degradation of gradients. This is particularly beneficial when dealing with subtle visual features such 
as pigmentation, pores, or fine wrinkles. The model was more robust in distinguishing similar skin 
conditions (e.g., acne vs. dark spots) and delivered higher F1 scores across most classes.      

In contrast, VGG-16, while easier to train and consistent in its performance, experienced 
overfitting and had difficulty capturing fine-grained differences. MobileNetV2, optimised for 
lightweight deployment, showed competitive performance but struggled with certain classes such as 
wrinkles and dark circles. 

7 Conclusions and Future Work 
 

In conclusion, this study has been conducted to have a better understanding of deep learning, especially 
CNNs, which helps in skin condition and type classification as part of a personalised skincare 
recommendation system. The machine learning model that is implemented in the application has been 
evaluated and compared between three architectures of CNN, including VGG-16, ResNet50 and 
MobileNetV2. Among them, ResNet50 delivered the highest classification performance, benefiting 
from its residual connections and deeper feature learning capabilities.      

However, several challenges were observed during the analysis. First, data imbalance impacted 
classification performance, with certain skin types (e.g., sensitive skin) being under-represented in the 
dataset, leading to lower recall scores. Addressing this issue through data augmentation techniques or 
collecting a more diverse dataset could improve overall model robustness. Second, environmental 
factors such as lighting, camera quality, and skin tone variations affected model predictions. Images 
captured in poor lighting conditions resulted in misclassification, as shadows and reflections distorted 
skin features. Incorporating adaptive pre-processing techniques, such as histogram equalisation or 
contrast normalisation, could mitigate these issues and improve classification accuracy.     

Additionally, misclassification between similar skin types (e.g., normal vs. combination skin) 
suggests the need for a hybrid approach. Future enhancements could involve multimodal learning, 
integrating image-based analysis with questionnaire-based inputs to refine recommendations. This 
approach would combine visual features with user-reported concerns, leading to more precise skincare 
advice Despite these limitations, the proposed system demonstrates promising potential for real-world 
applications in skincare technology. As deep learning advances, integrating explainable AI (XAI) 
techniques could provide interpretability in skincare recommendations, allowing users to understand 
the reasoning behind suggested products. 

Overall, Machine learning-based skincare recommendation systems demonstrate superior 
accuracy and personalization compared to conventional questionnaire-based approaches, offering 
significant potential to transform the cosmetics industry. Future enhancements should focus on 
expanding datasets to encompass a broader spectrum of skin types and conditions, incorporating expert-
verified dermatological data to improve model reliability, and leveraging high-performance computing 
resources to accelerate model training. Furthermore, extending platform compatibility to iOS, 
implementing multilingual capabilities, and upgrading backend database systems are recommended to 
improve accessibility, scalability, and overall user experience. 

.  
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