PERFORMANCE OF ACTIVATED CARBON FROM CASSAVA PEEL FOR THE REMOVAL OF Pb (II) IN Pb SOLUTION

Authors

  • Nor Hafizah Che Ismail Dr
  • Nur Azzatul Farisya Zurizam
  • Faiezah Hashim

DOI:

https://doi.org/10.24191/joa.v13i1.4582

Keywords:

Activated carbon, Cassava peels, Heavy metals Adsorption

Abstract

This study aimed to investigate the potential of cassava peel-activated carbon for the removal of Pb (II) ions from a Pb synthetic solution. Cassava peels are rich in carbohydrates (cellulose and hemicellulose) and lignin, which work well to remove heavy metals.  Cassava peel has a high carbon content and a low ash content, and activated carbon may be made from it. Dried cassava peels were carbonised in a muffle furnace at 350°C for one hour and treated with zinc chloride acid (ZnCl2). Activated carbon produced and its physiochemical characteristics, including ash content, iodine number, volatile matter, methylene blue adsorption, moisture content, and pH, were assessed. Results showed that the proximate analysis for the determination of macronutrients of cassava peelings consisted of 77% moisture content, 1% ash content, 2.6 % volatile matter, and 850.43 mg/g iodine number. The result showed that the materials are good precursors for the production of activated carbon and suitable adsorbents for the removal of heavy metals such as Pb (II). The findings of this study will be useful in developing a cost-effective and efficient alternative to activated carbon.

References

Adekunle, A.S.; Oyekule, J.A.O.; Baruwa, S.O; Ogunfowokan, O.A. and Ebenso, E.E.(2014)

Speciation study of the heavy metals in commercially available recharge cards coatings in

Nigeria and the health implications. Toxicology Reports, 1: 243-251

Ahmad, A., & Azam, T. (2019). Water purification technologies. In Elsevier eBooks (pp. 83–120).

Astuti, W., Hidayah, M., Fitriana, L., Mahardhika, M. A., & Irchamsyah, E. F. (2020). Preparation of activated carbon from cassava peel by microwave-induced H3PO4 activation for naphthol blue-black removal. AIP Conference Proceedings.

Aulia, S., Wijayanti, A., & Hadisoebroto, R. (2021). The effect of mixing speed and contact time on dye removal using Cassava Peel adsorbents. IOP Conference Series: Earth and Environmental Science, 737(1), 012013.

Bożęcka, A., Orlof-Naturalna, M., & Kopeć, M. (2021). Methods of Dyes Removal from Aqueous Environment. Journal of Ecological Engineering, 22(9), 111–118. https://doi.org/10.12911/22998993/141368

Budianto, A., Kusdarini, E., Effendi, S. S. W., & Aziz, M. (2019). The Production of Activated Carbon from Indonesian Mangrove Charcoal. IOP Conference Series: Materials Science and Engineering, 462, 012006. https://doi.org/10.1088/1757-899x/462/1/012006

Das, D., Samal, D. P., & Bc, M. (2015). Preparation of Activated Carbon from Green Coconut Shell and its Characterization. Journal of Chemical Engineering & Process Technology, 06(05). https://doi.org/10.4172/2157-7048.1000248

Egbeocha, C.C, & N.A.A Okereke (2016). A Review on Performance of Cassava Peeling Machines in Nigeria.

Gautam, R. K., Mudhoo, A., Lofrano, G., & Chattopadhyaya, M. C. (2014). Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. Journal of Environmental Chemical Engineering, 2(1), 239–259. https://doi.org/10.1016/j.jece.2013.12.019

Hashem, F. S., & Amin, M. S. (2016). Adsorption of methylene blue by activated carbon derived from various fruit peels. Desalination and Water Treatment, 57(47), 22573–22584. https://doi.org/10.1080/19443994.2015.1132476

Hock, P. E., & Zaini, M. a. A. (2018). Activated carbons by zinc chloride activation for dye removal – a commentary. Acta Chimica Slovaca, 11(2), 99–106. https://doi.org/10.2478/acs-2018-0015

Ilaboya, I. R., Oti, E., Ekoh, G., & Umukoro, L. O. (2013). Performance of Activated Carbon from Cassava Peels for the Treatment of Effluent Wastewater. Iranica Journal of Energy and Environment, 4(4). https://doi.org/10.5829/idosi.ijee.2013.04.04.08

Ismanto, A. E., Wang, S., Soetaredjo, F. E., & Ismadji, S. (2010). Preparation of capacitor’s electrode from cassava peel waste. Bioresource Technology, 101(10), 3534–3540. https://doi.org/10.1016/j.biortech.2009.12.123

Johnson, C. H. (2014). Advances in pretreatment and clarification technologies. In Elsevier eBooks (pp. 60–74). https://doi.org/10.1016/b978-0-12-382182-9.00029-3

Kayiwa, R., Kasedde, H., Lubwama, M., & Kirabira, J. B. (2021). The potential for commercial scale production and application of activated carbon from cassava peels in Africa: A review. Bioresource Technology Reports, 15, 100772. https://doi.org/10.1016/j.biteb.2021.100772

Králik, M. (2014). Adsorption, chemisorption, and catalysis. Chemical Papers, 68(12). https://doi.org/10.2478/s11696-014-0624-9

Ma, P., Ma, M., Wu, J., Qian, Y., Wu, D., & Zhang, X. (2019). The effect of plastic on performance of activated carbon and study on adsorption of methylene blue. Journal of Materials Research, 34(17), 3040–3049. https://doi.org/10.1557/jmr.2019.193

Maulina, S., & Iriansyah, M. (2018). Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder. IOP Conference Series, 309, 012072. https://doi.org/10.1088/1757-899x/309/1/012072

Moreno–Piraján, J. C., & Giraldo, L. (2010). Adsorption of copper from aqueous solution by activated carbons obtained by pyrolysis of cassava peel. Journal of Analytical and Applied Pyrolysis, 87(2), 188–193. https://doi.org/10.1016/j.jaap.2009.12.004

Núñez-Regueiro, M. (2010). Fusing visual and clinical information for lung tissue classification in HRCT data. HAL (Le Centre Pour La Communication Scientifique Directe). https://doi.org/10.1016/j

Rashed, M. N. (2013). Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater. In InTech eBooks. https://doi.org/10.5772/54048

Sudaryanto, Y., et al. “High Surface Area Activated Carbon Prepared from Cassava Peel by Chemical Activation.” Bioresource Technology, vol. 97, no. 5, 1 Mar. 2006, pp. 734–739,

Omotosho, O. A., & Sangodoyin, A. Y. (2013). Production and utilization of cassava peel activated carbon in treatment of effluent from cassava processing industry. Water Practice & Technology, 8(2), 215–224. https://doi.org/10.2166/wpt.2013.023

Ospino-Orozco, J., Parra-Barraza, J., Cervera-Cahuana, S., Coral-Escobar, E. E., & Vargas-Ceballos, O. (2020). Activated carbon from cassava peel: A promising electrode material for supercapacitors. Revista Facultad De Ingenieria Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20200803

Owamah, H. (2013). Biosorptive removal of Pb (II) and Cu (II) from wastewater using activated carbon from cassava peels. Journal of Material Cycles and Waste Management, 16(2), 347–358. https://doi.org/10.1007/s10163-013-0192-z

Qasem, N. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water, 4(1). https://doi.org/10.1038/s41545-021-00127-0

De Jesús Soria Aguilar, M., Martínez-Luévanos, A., Sánchez-Castillo, M. A., Pedroza, F. R. C., Toro, N., & Narváez-García, V. M. (2021). Removal of Pb(II) from aqueous solutions by using steelmaking industry wastes: Effect of blast furnace dust’s chemical composition. Arabian Journal of Chemistry, 14(4), 103061. https://doi.org/10.1016/j.arabjc.2021.103061

Sudaryanto, Y., Hartono, S. B., Irawaty, W., Hindarso, H., & Ismadji, S. (2006). High surface area activated carbon prepared from cassava peel by chemical activation. Bioresource Technology, 97(5), 734–739. https://doi.org/10.1016/j.biortech.2005.04.029

Utsev, J.T. (2020). Journal of Materials and Environmental Science, www.jmaterenvironsci.com.

Widiarto, S., Pramono, E., Suharso, Rochliadi, A., & Arcana, I. M. (2019). Cellulose Nanofibers Preparation from Cassava Peels via Mechanical Disruption. Fibers, 7(5), 44. https://doi.org/10.3390/fib7050044

Wołowiec, M., Komorowska-Kaufman, M., Pruss, A., Rzepa, G., & Bajda, T. (2019). Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review. Minerals, 9(8), 487. https://doi.org/10.3390/min9080487

Downloads

Published

2025-04-30

Issue

Section

Archives