
Junior Science Communications

Faculty of Applied Sciences, UiTM Shah Alam https://journal.uitm.edu.my/ojs/index.php/JSC

Colloquium on Applied Sciences 2 2024 8-14 July 2024, Faculty of Applied Sciences, UiTM Shah Alam, Malaysia

Preparation of g-C₃N₄/ZnO for Degradation of Ofloxacin under Visible Light Irradiation

Nur Nabihah Mohd Sunhaji^{a*}, Nor Fadilah Chayed^{a*}, Nur Syahira Izzati^a,

Structured Abstract

Background: The presence of non-biodegradable antibiotics in wastewater can lead to antibiotic pollution which has negative impacts on the environment and living organisms. Hence, it is important to discover a technique for removing hazardous organic contaminants and antibiotics in water bodies. The use of g-C₃N₄ photocatalyst in heterogeneous photocatalysis for advanced oxidation process (AOP) has gained significant attention in recent years for wastewater treatment. Nevertheless, ZnO and g-C₃N₄ have several limitations such as high recombination rate of electron-hole (e^-/h^+) pairs and limited light absorption within the range of solar spectrum, respectively. These factors can reduce its photocatalytic activity.

Methods: Therefore, our study develops the preparation of a semiconductor heterojunction between g-C₃N₄ and ZnO. The g-C₃N₄/ZnO photocatalyst was characterized using X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) to determine its structural and morphological. The synthesis methodology of materials in obtaining pristine ZnO using a sol-gel method and pristine g-C₃N₄ using thermal polymerization method, whereas for g-C₃N₄/ZnO composite, wet impregnation method was employed. The composite of g-C₃N₄/ZnO was prepared to improve the photocatalytic performance under visible light irradiation to degrade OFL.

Results: This study shows that the g-C₃N₄/ZnO photocatalyst was successfully synthesized by the wet impregnation method. The structural, morphological, and optical properties of g-C₃N₄/ZnO were identified by using XRD, FESEM, and UV-Vis. The g-C₃N₄/ZnO composite appeared crystalline and consisted of nanospherical shapes. The optimal 0.75 g of g-C₃N₄/ZnO composite showed the highest degradation of 78.4% toward photodegradation of 10 mg/L OFL antibiotic under the condition of pH 9 within 240 minutes.

Conclusion: In conclusion, this study's findings indicated a promising potential for antibiotic degradation in wastewater, thereby heading for sustainable development as photocatalysis is an environmentally friendly process. The improved photocatalytic performance of g-C₃N₄/ZnO photocatalyst in this study has a considerable potential to degrade organic pollutants under light effectively, to substitute the conventional method.

Keywords: g-C₃N₄/ZnO photocatalyst, ofloxacin, photocatalysis, visible light, water treatment

^{*}Correspondence: norfadilah6231@uitm.edu.my

^a School of Chemistry & Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia