Junior Science Communications Faculty of Applied Sciences, UiTM Shah Alam https://journal.uitm.edu.my/ojs/index.php/JSC

Colloquium on Applied Sciences - CAS 2023 17-18 July 2023, Faculty of Applied Sciences, UiTM Shah Alam, Malaysia

A Review on the Synthesis Methods for Producing Nanostructured Black TiO₂

Mohamad Adiputera Arma'in^a, Lim Ying Chin^{ab*}

Structured Abstract

Background: Advanced oxidation process (AOP) employing nanostructured TiO_2 is extensively used in environmental remediation because of its photosensitivity, non-toxicity, long-term stability, and low cost. However, nanostructured TiO_2 suffers from quick charge recombination and poor quantum efficiency. By introducing defects and generating Ti^{3+} , black TiO_2 can be produced. Black TiO_2 's crystal structure, morphology, and optical characteristics are affected by its synthesis method, which affects its photocatalytic activity.

Methods: Characterized by its black appearance, black TiO_2 exhibits enhanced charge separation and photocatalytic activity compared to conventional TiO_2 . Various characterization methods such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy are employed. XRD reveals the crystal phase, while XPS provides insight into its chemical states. UV-Vis spectroscopy aids in understanding its optical absorption behavior. Understanding these properties and characterization methods can pave the way for harnessing the full potential of black TiO_2 in environmental and energy-related applications.

Results: Various synthesis methods have been explored to produce black TiO₂, including metal reduction, CaH₂ reduction, hydrogenation, and electrochemical reduction. In the metal reduction approach, metal precursors like magnesium or aluminium are used to reduce TiO₂, leading to defect formation and the creation of Ti³⁺ states responsible for its black appearance. The CaH₂ reduction method involves the reaction of CaH₂ with TiO₂ at 300-500 °C to produce black TiO₂. Hydrogenation utilizes H₂ gas at 350 °C to introduce defects. In electrochemical reduction technique, an applied voltage facilitates the reduction process in Na₂SO₄ solution. Each method influences the final properties of black TiO₂, affecting its crystal structure, optical properties (a reduction in bandgap from 3.2 to 2.8), and photocatalytic performance. Black TiO₂ outperforms white TiO₂ in dye removal, decolorization, and hydrogen generation

Conclusion: The different synthesis approaches have demonstrated their ability to generate black TiO_2 with unique properties compared to traditional TiO_2 . A comprehensive understanding of these synthesis routes is crucial in designing novel materials for various applications.

Keywords: Black titanium dioxide, reduction, synthesis, defect, morphology

^{*}Correspondence: limyi613@uitm.edu.my

^aSchool of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia ^bElectrochemical Materials and Sensor (EMaS), Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia