Junior Science Communications Faculty of Applied Sciences, UiTM Shah Alam https://journal.uitm.edu.my/ojs/index.php/JSC

Colloquium on Applied Sciences- CAS 2023 17-18 July 2023, Faculty of Applied Sciences, UiTM Shah Alam, Malaysia

Method Development for The Identification of Volatile Organic Compound (VOC) in the Faecal of Malayan Tiger using SPME Extraction and GC-MS Analysis

Muhammad Mustaqim Mohd Zuki^{a,}, Nur Nadiah Md Yusof^{a*}

Structured Abstract

Background: Captive breeding programs aim to protect species, but they can negatively effect the health of captive tigers due to the unnatural environment and behaviour. To monitor the well-being of caged tigers without causing them more stress, researchers are using faecal metabolome profiling, a non-invasive method. The research goal is to efficiently handle and analyse faeces samples from Malayan tigers. While Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry (SPME-GC-MS) is commonly used for VOC measurement in other animals' faeces, its application for tiger faeces is limited.

Methods: This study evaluated various aspects of sample preparation, such as extraction temperature, exposure time, and mass of the faecal sample to be used, when processing Malayan tiger faeces samples using a pipeline incorporating solid phase micro-extraction (SPME) coupled to gas chromatographymass spectrometry (GC-MS).

Results: This study determined the extraction parameters, such as temperature of 70°C and exposure duration of 30 minutes, that produce the most accurate and consistent findings, including the sample mass, which is 400 mg. In our final suggestion, we offer a technique that is optimised for the direct SPME-GC-MS analysis of VOCs in samples of Malayan tiger excrement. With this improvement, it will be feasible to identify VOCs in samples of faeces from Malayan tigers, giving that information about a particular species.

Conclusion: As a result, this work has made significant contributions to our understanding of how to best handle and analyse faeces samples for Malayan tigers, particularly when using Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry (SPME-GC-MS). In conclusion, our study helps to the conservation efforts of the Malayan tiger by offering a practical way for assessing the physiological health of captivity-housed tigers without increasing their stress.

Keywords: Volatile organic compound, faecal metabolome profiling, solid-phase microextraction, gas chromatography-mass spectrometry, Malayan tiger

^{*}Correspondence: nurnadiah@uitm.edu.my

^aSchool of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.