Ramification of alcohols towards microalgae fatty acid esters recovery via direct transesterification
DOI:
https://doi.org/10.24191/mjcet.v8i1.4628Keywords:
Microalgae, In-situ transesterification, Fatty Acid Methyl Ester, Fatty Acid Ethyl EsterAbstract
Alcohols are commonly utilised for methyl or ethyl esters production in the transesterification of biodiesel production; a non-petroleum-based energy sources which is mostly cited as mono-alkyl esters. The substantial needs of high reactant concentration and catalyst have diverted studies towards direct transesterification (DT). Traditional physicochemical disruption towards microalgae cells which aims for free fatty acids collection commonly goes all along with the DT which reducing a lot of cost and chemical dependency. The aimed fatty acid methyl esters (FAMEs) and fatty acid ethyl esters (FAEEs) were transesterified using freshly harvested Chlorella sp. 15g/L HCDs of wet microalgae and alcohol with ratio of 1:3 microalgae oil to alcohol were used in utilising the DT. This method could provide higher reaction rate as well as a shorter reaction time and promoting a higher purity of biodiesel. The objective of this study is to observe the effect of ethanol and methanol as acylation agent in producing biodiesel via direct transesterification of Chlorella sp. The Fourier-Transform Infrared Spectroscopy (FTIR) and Gas Chromatography Mass Spectrometry (GC/MS) were used to determine the purity and the characteristics of the alcohol affecting the DT. The biodiesel from methanol solvent provides higher purity product since it was more soluble and less dense compared to the ethanol, which enhanced the reactivity of DT. The final mass of FAME was lower compared to FAEE; 1.528 gram and 2.691 gram, respectively. This is due to the simple structure of methanol, which enhanced the bond breaking as well as vaporisation at a lower temperature. Final FAME product was characterised as butenoic acid, 3-methyl-, methyl ester with purity of 37.84 %, and FAEE product was a 9-octadecenoic acid (Z)-, methyl ester with purity of 15.75 %. In conclusion, direct transesterification using methanol was more effective than ethanol due to its molar ratio.
References
Banković–Ilić, I. B., Miladinović, M. R., Stamenković, O. S., & Veljković, V. B. (2017). Application of nano CaO–based catalysts in biodiesel synthesis. Renewable and Sustainable Energy Reviews, 72, 746–760. https://doi.org/https://doi.org/10.1016/j.rser.2017.01.076
Barsanti, L., Coltelli, P., Evangelista, V., Frassanito, A. M., Passarelli, V., Vesentini, N., & Gualtieri, P. (2008). Oddities and curiosities in the algal world. In V. Evangelista, L. Barsanti, A. M. Frassanito, V. Passarelli, & P. Gualtieri (Eds.), Algal Toxins: Nature, Occurrence, Effect and Detection (pp. 353–391). Springer Netherlands.
Ben Bacha, A., Alonazi, M., Alharbi, M. G., Horchani, H., & Ben Abdelmalek, I. (2022). Biodiesel production by single and mixed immobilized lipases using waste cooking oil. Molecules, 27(24). https://doi.org/10.3390/MOLECULES27248736
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/https://doi.org/10.1016/j.biotechadv.2007.02.001
Farhangi, H., Mozafari, V., Roosta, H. R., Shirani, H., & Farhangi, M. (2023). Optimizing growth conditions in vertical farming: enhancing lettuce and basil cultivation through the application of the Taguchi method. Scientific Reports, 13(1), 6717. https://doi.org/10.1038/s41598-023-33855-z
Farouk, S. M., Tayeb, A. M., Abdel-Hamid, S. M. S., & Osman, R. M. (2024). Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: a comprehensive review. Environmental Science and Pollution Research International, 31(9), 12722. https://doi.org/10.1007/S11356-024-32027-4
Figueroa-Torres, G. M., Pittman, J. K., & Theodoropoulos, C. (2021). Optimisation of microalgal cultivation via nutrient-enhanced strategies: the biorefinery paradigm. Biotechnology for Biofuels, 14(1), 64. https://doi.org/10.1186/s13068-021-01912-2
Gerde, J. A., Montalbo-Lomboy, M., Yao, L., Grewell, D., & Wang, T. (2012). Evaluation of microalgae cell disruption by ultrasonic treatment. Bioresource Technology, 125, 175–181. https://doi.org/https://doi.org/10.1016/j.biortech.2012.08.110
Gong, Y., Chen, X., & Wu, W. (2024). Application of fourier transform infrared (FTIR) spectroscopy in sample preparation: Material characterization and mechanism investigation. Advances in Sample Preparation, 11, 100122. https://doi.org/https://doi.org/10.1016/j.sampre.2024.100122
Helwani, Z., Othman, M. R., Aziz, N., Fernando, W. J. N., & Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Processing Technology, 90(12), 1502–1514. https://doi.org/https://doi.org/10.1016/j.fuproc.2009.07.016
Ichihara, K., & Fukubayashi, Y. (2010). Preparation of fatty acid methyl esters for gas-liquid chromatography [S]. Journal of Lipid Research, 51(3), 635–640. https://doi.org/10.1194/jlr.D001065
Inayat, A., Nassef, A. M., Rezk, H., Sayed, E. T., Abdelkareem, M. A., & Olabi, A. G. (2019). Fuzzy modeling and parameters optimization for the enhancement of biodiesel production from waste frying oil over montmorillonite clay K-30. Science of The Total Environment, 666, 821–827. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.02.321
Insan, A. I., Christiani, Hidayah, H. A., & Widyartini, D. S. (2018). The lipid content of the culture microalgae using media of Tapioca liquid waste. Biosaintifika, 10(2), 439–447. https://doi.org/10.15294/biosaintifika.v10i2.12381
Li, J., Hao, X., van Loosdrecht, M. C. M., & Lin, Y. (2025). Understanding the ionic hydrogel-forming property of extracellular polymeric substances: Differences in lipopolysaccharides between flocculent and granular sludge. Water Research, 268, 122707. https://doi.org/https://doi.org/10.1016/j.watres.2024.122707
Loh, S. H., Chen, M. K., Fauzi, N. S., Aziz, A., & Cha, T. S. (2021). Enhanced fatty acid methyl esters recovery through a simple and rapid direct transesterification of freshly harvested biomass of Chlorella vulgaris and Messastrum gracile. Scientific Reports, 11(1), 2720. https://doi.org/10.1038/s41598-021-81609-6
Mahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6), 990–1003. https://doi.org/https://doi.org/10.1016/j.ultsonch.2009.09.005
Mike Braley. (2015, December 21). Free FTIR Basic Organic Functional Group Reference Chart. https://www.thermofisher.com/blog/materials/a-gift-for-you-an-ftir-basic-organic-functional-group-reference-chart/
Ministry of Energy and Mineral Resources. (2023). Summary of the National Energy Transition Roadmap Phase 1: Solidifying energy aspirations. https://ekonomi.gov.my/sites/default/files/2023-08/National%20Energy%20Transition%20Roadmap.pdf
Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M., & Rooney, D. W. (2021). Recent advances in carbon capture storage and utilisation technologies: A review. Environmental Chemistry Letters, 19(2), 797–849. https://doi.org/10.1007/s10311-020-01133-3
Pandey, S., Narayanan, I., Selvaraj, R., Varadavenkatesan, T., & Vinayagam, R. (2024). Biodiesel production from microalgae: A comprehensive review on influential factors, transesterification processes, and challenges. Fuel, 367(February), 131547. https://doi.org/10.1016/j.fuel.2024.131547
Ponnusamy, V. K., Nagappan, S., Bhosale, R. R., Lay, C.-H., Duc Nguyen, D., Pugazhendhi, A., Chang, S. W., & Kumar, G. (2020). Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications. Bioresource Technology, 310, 123414. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123414
Pydimalla, M., Husaini, S., Kadire, A., & Kumar Verma, R. (2023). Sustainable biodiesel: A comprehensive review on feedstock, production methods, applications, challenges and opportunities. Materials Today: Proceedings, 92, 458–464. https://doi.org/https://doi.org/10.1016/j.matpr.2023.03.593
Ratnapuram, H. P., Vutukuru, S. S., & Yadavalli, R. (2018). Mixotrophic transition induced lipid productivity in Chlorella pyrenoidosa under stress conditions for biodiesel production. Heliyon, 4(1). https://doi.org/10.1016/j.heliyon.2017.e00496
Sajjadi, B., Chen, W.-Y., Raman, Abdul. Aziz. A., & Ibrahim, S. (2018). Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renewable and Sustainable Energy Reviews, 97, 200–232. https://doi.org/https://doi.org/10.1016/j.rser.2018.07.050
Salaheldeen, M., Mariod, A. A., Aroua, M. K., Rahman, S. M. A., Soudagar, M. E. M., & Fattah, I. M. R. (2021). Current state and perspectives on transesterification of triglycerides for biodiesel production. Catalysts, 11(9). https://doi.org/10.3390/catal11091121
Sharma, Y. C., Yadav, M., & Upadhyay, S. N. (2019). Latest advances in degumming feedstock oils for large-scale biodiesel production. Biofuels, Bioproducts and Biorefining, 13(1), 174–191. https://doi.org/https://doi.org/10.1002/bbb.1937
Sikorski, Ł. (2021). Effects of sodium chloride on algae and crustaceans—the neighbouring links of the water trophic chain. Water, 13(18). https://doi.org/10.3390/w13182493
Srivastava, A., & Prasad, R. (2000). Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, 4(2), 111–133. https://doi.org/https://doi.org/10.1016/S1364-0321(99)00013-1
Taher, H., Al-Zuhair, S., Al-Marzouqi, A. H., Haik, Y., & Farid, M. M. (2011). A review of enzymatic transesterification of microalgal oil-based biodiesel using supercritical technology. In Enzyme Research (Vol. 2011, Issue 1). https://doi.org/10.4061/2011/468292
Tan, X. B., Lam, M. K., Uemura, Y., Lim, J. W., Wong, C. Y., Ramli, A., Kiew, P. L., & Lee, K. T. (2018). Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: Growth optimization study and fatty acid composition analysis. Energy Conversion and Management, 164, 363–373. https://doi.org/https://doi.org/10.1016/j.enconman.2018.03.020
Tobar, M., & Núñez, G. A. (2018). Supercritical transesterification of microalgae triglycerides for biodiesel production: Effect of alcohol type and co-solvent. The Journal of Supercritical Fluids, 137, 50–56. https://doi.org/https://doi.org/10.1016/j.supflu.2018.03.008
Torres, S., Acien, G., García-Cuadra, F., & Navia, R. (2017). Direct transesterification of microalgae biomass and biodiesel refining with vacuum distillation. Algal Research, 28, 30–38. https://doi.org/https://doi.org/10.1016/j.algal.2017.10.001
Xue, Z., Yu, Y., Yu, W., Gao, X., Zhang, Y., & Kou, X. (2020). Development prospect and preparation technology of edible oil from microalgae. In Frontiers in Marine Science (Vol. 7). Frontiers Media S.A. https://doi.org/10.3389/fmars.2020.00402
Yerena-Prieto, B. J., Gonzalez-Gonzalez, M., García-Alvarado, M. Á., Casas, L., Palma, M., Rodríguez-Jimenes, G. D. C., Barbero, G. F., & Cejudo-Bastante, C. (2022). Evaluation of the effect of different co-solvent mixtures on the supercritical CO2 extraction of the phenolic compounds present in Moringa Oleifera Lam. leaves. Agronomy, 12(6). https://doi.org/10.3390/agronomy12061450
Zulqarnain, Yusoff, M. H. M., Nazir, M. H., Rahman, M. F. A., Yaqoob, H., Rashid, T., Hai, I. U., & Sher, F. (2023). Hybrid valorization of biodiesel production using sustainable mixed alcohol solvent. Environmental Technology & Innovation, 29, 102963. https://doi.org/https://doi.org/10.1016/j.eti.2022.102963
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Syafiq Abu Hassan, Aina Irdina Mohd Yusmadi, Nik Raikhan Nik Him

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



