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ABSTRACT 

Concepts from algebraic geometry such as cones and fans are related to 
toric varieties and can be applied to determine the convex polytopes and 
homogeneous coordinate rings of multivariate polynomial systems. The 
homogeneous coordinates of a system in its projective vector space can 
be	associated	with	the	entries	of	the	resultant	matrix	of	the	system	under	
consideration. This paper presents some conditions for the homogeneous 
coordinates of a certain system of bivariate polynomials through the 
construction and implementation of the Sylvester-Bèzout hybrid resultant 
matrix formulation. This basis of the implementation of the Bèzout 
block applies a combinatorial approach on a set of linear inequalities, 
named 5-rule. The inequalities involved the set of exponent vectors of 
the monomials of the system and the entries of the matrix are determined 
from	the	coefficients	of	facets	variable	known	as	brackets.	The	approach	
can determine the homogeneous coordinates of the given system and the 
entries of the Bèzout block. Conditions for determining the homogeneous 
coordinates are also given and proven.   

Keywords: algebraic geometry, Bèzout resultant matrix, combinatorial, 
facet variable, homogeneous coordinates 
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Introduction

The fundamental objects of study in algebraic geometry are algebraic 
varieties, which are geometric manifestations of solutions of systems of 
polynomial equations. The studied classes of algebraic varieties were in 
plane algebraic curves, which include lines and circles, and toric varieties 
such as divisors and fans (collection of cones) as in Puenta [1] and 
Karzhemanov [2, 3]. A good reference in the field of algebraic geometry can 
be referred in Cox et. al [4, 5]. Basically, the subject of algebraic geometry 
is the study of systems of polynomial equations in several variables, that 
has a wide range of applications in science and engineering, for instance in 
robotic, camera motion, computer aided design (CAD) and computer aided 
manufacturing (CAM) systems [6]. Those systems were modeled as sparse 
polynomials which can be utilised by considering the combinatorial structure 
of the polynomials represented as the Newton polytopes, refer Cox et. al 
[7], which is the convex set of the exponent vectors of the polynomials’ 
variables.  Recently, Dickenstein et. al [8] also worked on the combinatorics 
of polytopes but in 4-dimensional.

Ahmad and Aris [9] presented an algorithm that has applied the 
concepts from algebraic geometry to determine the homogeneous coordinate 
ring of bivariate polynomials and to compute the entries of the Bèzout matrix 
of the system. The algorithm terminates successfully with the correct matrix 
dimension and entries in comparison with the work given in Khetan [10]. In 
this paper, we study the effects of translating the vertices of the polytopes 
of the polynomial system studied in Khetan. The effects of scaling the 
dimension of the Newton polytope are also investigated. Thus, sufficient 
conditions in deriving the homogeneous coordinates of such systems will 
be established.

Preliminaries on Algebraic Geometry

Considering an unmixed polynomial system whose supports are identical 
in the following form: 

                                            (1)
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Where the entries of Syl and Syl* are of Sylvester type, the entries of Bez are of Bèzout type and 0
is a square matrix of zero entries. In this paper, the application of algebraic geometry is focused
only on the Bèzout block. The entries of the Bèzout block are linear forms in the bracket variables
[uvw] defined as follows:

 








333

222

111

CCC
CCC
CCC

 (3)

Where  kji CCC ,, are the coefficients of ifx  . The bracket variables satisfy a certain set of
inequalities formulated by Khetan [10] and were implemented to five rules by Ahmad and Aris
[9], named 5-Rule and was computed with complexity  4nO . 
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Where 21,RR and 3R are the similar partitions of the fan constructed in Khetan [10]. In addition,
Khetan’s formula of the Bèzout matrix is also considered and restated in the following theorem.

Theorem 1. The Bèzout matrix is the matrix of the linear map   )2int(
*: QQQ SS  defined by
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The bracket variables   in Theorem 1, are also known as the coefficients of the facet
variables 54321 ,,,, yyyyy for the polynomial ring and the exponent vectors of the facet variables as
follows,
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Where 21,RR and 3R are the similar partitions of the fan constructed in Khetan [10]. In addition,
Khetan’s formula of the Bèzout matrix is also considered and restated in the following theorem.
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Where 21,RR and 3R are the similar partitions of the fan constructed in Khetan [10]. In addition,
Khetan’s formula of the Bèzout matrix is also considered and restated in the following theorem.
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Where 21,RR and 3R are the similar partitions of the fan constructed in Khetan [10]. In addition,
Khetan’s formula of the Bèzout matrix is also considered and restated in the following theorem.
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Where 21,RR and 3R are the similar partitions of the fan constructed in Khetan [10]. In addition,
Khetan’s formula of the Bèzout matrix is also considered and restated in the following theorem.
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 1,,1,10  , and F is the set of all triples    3,, AQ  satisfying (4).
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Where 21,RR and 3R are the similar partitions of the fan constructed in Khetan [10]. In addition,
Khetan’s formula of the Bèzout matrix is also considered and restated in the following theorem.
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Geometrically the polynomial (1) can be viewed as the Newton 
polytope              and support                                      . The support can be 
plot in a Cartesian coordinate, (x, y) if the dimension of affine space is 2 and 
it is called polytope. Thus, in this implementation, the polynomial equations 
with two variables and three equations are used. Polytopes have faces, 
edges and vertices. The faces of polytope are when polygons lying in plane, 
while edges are line segments that connect certain pairs of vertices (faces 
of dimension 1) and vertices are points (faces of dimension 0). Hence, each 
facet                       of Q is a polytope of dimension less than dimension of 
Q. Therefore, if Q has dimension n, then facets are faces of dimension n – 1. 

To define a face of an arbitrary Newton polytope, an affine hyperplane 
is needed. Let  v be a nonzero vector in  Rn, an affine hyperplane is defined 
by an equation of the form m . v = -a . Therefore, for every unmixed system 
of polynomial equations, there exists an associated Newton polytope Q 
defined by            

                   					     (5)

Thus, any Newton polytope Q in Rn with s number of edges can be defined 
by its facet inequalities given by 

                              					    (6)

for some integers a1 ,..., as which are referred to as the data for Q. The inner 
normal v1 ,..., vs are called rays. The set of data and inner normal are unique 
for the facets . Hence the following definition are needed for homogenisation 
coordinate xa1 ,.., as.

Definition 2. [10] The Q-homogenisation map                       is defined by   
for i = 1,...,s .
Definition 3. [10] The homogeneous coordinate ring for  X = XA is the 
polynomial ring SX = K [y1 ,..., ys] such that the monomials are graded.

	
Let S be the polynomial ring, S = C[y1,...,ys]  with one variable for 

each ray in the fan     Q determining the toric variety XA .
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dimension of affine space is 2 and it is called polytope. Thus, in this implementation, the
polynomial equations with two variables and three equations are used. Polytopes have faces, edges
and vertices. The faces of polytope are when polygons lying in plane, while edges are line segments
that connect certain pairs of vertices (faces of dimension 1) and vertices are points (faces of
dimension 0). Hence, each facet  sF  ,,1   of Q is a polytope of dimension less than dimension
of Q. Therefore, if Q has dimension n, then facets are faces of dimension n – 1.

To define a face of an arbitrary Newton polytope, an affine hyperplane is needed. Let 
be a nonzero vector in nR , an affine hyperplane is defined by an equation of the form am  . 
Therefore, for every unmixed system of polynomial equations, there exists an associated Newton
polytope Q defined by




ma
Qmi min (5)

Thus, any Newton polytope Q in nR with s number of edges can be defined by its facet
inequalities given by

 siamRmQ ii
n ,,1,,|   , (6)

for some integers saa ,,1  which are referred to as the data for Q. The inner normal s ,,1  are 
called rays. The set of data and inner normal are unique for the facets i . Hence the following
definition are needed for homogenisation coordinate sx  ,,1  .

Definition 2. [10] The Q-homogenisation map sn
Q ZZ : is defined by   iiiQ a  , for

si ,,1 .
Definition 3. [10] The homogeneous coordinate ring for AXX  is the polynomial ring 

 sX yyKS ,,1  such that the monomials are graded.

Let S be the polynomial ring,  syyS ,,1 C with one variable for each ray in the fan 
Q determining the toric variety AX .

Let nQ R be the Newton polytope of dimension n, and let the support  NA  ,,1 

such that convex A equals Q. The toric variety   1* 




 Nn

AAX PC is the dimension n variety

defined as the Zariski closure of the set  Nxx  ,,1  that is the image of A where n
i Z and

    .,, *
1

n
nxxx C 

Precisely the elements of A are described in the following,
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Let               be  the Newton polytope of dimension n, and let the 
support                            such that convex A equals Q. The toric variety   

               
                          is the dimension n variety defined as the Zariski closure 

of the set                                 that is the image of          where                        and

x = (x1,...,xn)            . Precisely the elements of         are described in the 
following,
 

For all facets, the set of cones       are generated by inner normals. 
Then                 is a face of Q } is the normal fan of Q. This gives a toric 
variety denoted XA .  Each vertex of the cones is spanned by the inner normal 
vi  corresponding to facets (edges for two dimension) which are incident to 
the vertex. The characterisation of the normal fan is stated in the following 
theorem.

Theorem 2. [4] The normal toric variety of a fan                 is projective if and 
only if            is the normal fan of an n-dimensional lattice polytope in R n.

Besides a complete characterisation of polytope Q in terms of the rays 
in its normal fan, Weil divisors are describing in the following proposition.

Proposition 3. [10] The vi  are in one to one correspondence with 
the T-invariant prime Weil divisors on XA . Di denotes the divisor 
corresponding to vi .

A divisor D =                 determines a convex polytope of (6). The divisor 
is best described as a line bundle and a global section of that line bundle.
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For all facets, the set of cones  are generated by inner normals. Then

 Q
Q

offaceais| is the normal fan of Q. This gives a toric variety denoted AX . Each vertex

of the cones is spanned by the inner normal i corresponding to facets (edges for two dimension)
which are incident to the vertex. The characterization of the normal fan is stated in the following
theorem.

Theorem 2. [4] The normal toric variety of a fan 
Q

nR is projective if and only if  Q is the

normal fan of an n-dimensional lattice polytope in nR .

Besides a complete characterisation of polytope Q in terms of the rays in its normal fan,
Weil divisors are describing in the following proposition.

Proposition 3. [10] The i are in	one to	one correspondence with	 the	T-invariant prime Weil
divisors on AX . Di denotes the divisor corresponding to i .

A divisor  iiDaD determines a convex polytope of (6). The divisor is best described

as a line bundle and a global section of that line bundle.

The following example is to show an edge and its inward normal of a Newton polytope in 
2R that defines a hyperplane am  , .

Example 1. Consider a face of Newton polytope in 2R given in Figure 1. The edge AB joins the
vertex  1,0A and  2,1B , defines a hyperplane am  , where m is any point on AB and

 1,1  is an inward normal to AB.
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Theorem 2. [4] The normal toric variety of a fan 
Q

nR is projective if and only if  Q is the

normal fan of an n-dimensional lattice polytope in nR .

Besides a complete characterisation of polytope Q in terms of the rays in its normal fan,
Weil divisors are describing in the following proposition.

Proposition 3. [10] The i are in	one to	one correspondence with	 the	T-invariant prime Weil
divisors on AX . Di denotes the divisor corresponding to i .

A divisor  iiDaD  determines a convex polytope of (6). The divisor is best described

as a line bundle and a global section of that line bundle.

The following example is to show an edge and its inward normal of a Newton polytope in 
2R that defines a hyperplane am  , .

Example 1. Consider a face of Newton polytope in 2R given in Figure 1. The edge AB joins the
vertex  1,0A and  2,1B , defines a hyperplane am  , where m is any point on AB and

 1,1  is an inward normal to AB.
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Example 1. Consider a face of Newton polytope in R2 given in Figure 1. 
The edge AB joins the vertex A (0,1)  and B (1, 2) , defines a hyperplane         
                    where m is any point on AB and v = (1, - 1) is an inward normal 
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x - x - 1 = - 1.  Here a = 1. For instance,              is on AB giving                           . 
In addition, any point any point m’ in the shaded region satisfies the equation

Implementation Of The Bèzout Block

Considering (0,0) as an exponent vector (the constant term being non 
zero), a generalisation for the unmixed system worked by Khetan [10], we 
preserved the geometric structure, gives the system:
				  
							                       (7)

with i = 1,2,3, and A. {(0, 0), (h, 0), (0, k), (h, k), (2h, k), (h, 2k)} 
Geometrically, by Example 1, the Newton polytope for the unmixed 
polynomial system (7) can be illustrated as in Figure 2.
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Figure 2: Translated Newton Polytope of System (7)

In this paper, the application of algebraic geometry is discussed with 
respect to the computation of all valid combinations of                  that satisfy 
the inequalities in 5-Rule (4) and to compute the respective degree of the 
facet variables defined by the polynomial equations (7).

The vertices of the Newton polytope Q shown in Figure 2 are sorted 
in counter clockwise, starting at the origin (0, 0) as a distinguish of point. 
The direction of sorting the vertices is fixed to obtain an appropriate pair 
of a vertex and its ray which gives the hyperplane data computation of the 
Newton polytope. The hyperplane data is written as  a1,..., as and is defined 
by the equation of hyperplane (5), so that DQ=       ai Di  is the corresponding 
divisor. These divisors are the elements of the vector space SQ.  

Suppose h = k = 1 , the computation of the partition of the fan, R1, R2 
and R3 are derived as in Table 1. Thus, the sets of partition of the fans are                                                                    

                                                  Each vertex of the Newton polytope 
gives a two-dimensional cone in the normal fan where the rays, v is the 
generator of the cones. By gluing of cones, the resulting normal fan of the 
translated Newton polytope (Figure 2) is shown in Figure 3. This fan gives  
P4, such that all two-dimensional cones                                   are generated 
by the bases of  Z2. This implies that the affine toric varieties X     are copies 
of  C2. By gluing together five copies of C2, P4 is constructed. For simplicity, 
each ray is represented by numbers 1, 2, 3, 4, 5. Hence, the partitions of the 
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In this paper, the application of algebraic geometry is discussed with respect to the
computation of all valid combinations of   ,, that satisfy the inequalities in 5-Rule (4) and to 
compute the respective degree of the facet variables defined by the polynomial equations (7).

The vertices of the Newton polytope Q shown in Figure 2 are sorted in counter clockwise, 
starting at the origin  0,0 as a distinguish of point. The direction of sorting the vertices is fixed to
obtain an appropriate pair of a vertex and its ray which gives the hyperplane data computation of
the Newton polytope. The hyperplane data is written as saa ,,1  and is defined by the equation of

hyperplane (5), so that  iiQ DaD is the corresponding divisor. These divisors are the 

elements of the vector space .QS

Suppose 1 kh , the computation of the partition of the fan, ,1R 2R and 3R are derived
as in Table 1. Thus, the sets of partition of the fans are    3,2,5,1 21  RR and  43 R . Each
vertex of the Newton polytope gives a two-dimensional cone in the normal fan where the rays, 
is the generator of the cones. By gluing of cones, the resulting normal fan of the translated Newton 
polytope (Figure 2) is shown in Figure 3. This fan gives 4P , such that all two-dimensional cones

54321 ,,,,  are generated by the bases of 2Z . This implies that the affine toric varieties i
X

are copies of 2C . By gluing together five copies of 2C , 4P is constructed. For simplicity, each ray 
is represented by numbers 5.4,3,2,1, Hence, the partitions of the fan for the case 1 kh is
viewed in Figure 3 by applying the concept of cones and fan.
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is represented by numbers 5.4,3,2,1, Hence, the partitions of the fan for the case 1 kh is
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fan for the case h = k = 1  is viewed in Figure 3 by applying the concept 
of cones and fan. 

Table 1: Partition of the Fan Ri 

Figure 3: The Fan of Figure 2 When h = k = l 

The above fan is determined by the divisor D =         ai Di = D3 + 
3D4 + D5  such that a1 = 0, a2 = 0, a3 = 1,a4 = 3, a5 = 1 and generates by 
v1 , v2 , v3 , v4 , v5 .
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Table 1: Partition of the Fan iR
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The above fan is determined by the divisor 543
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1
3 DDDDaD i

i
i 

such that

1,3,1,0,0 54321  aaaaa and generates by 54321 ,,,,  .

The formulation of the 5-Rule involves combinatorial approach where all the nonzero
coefficients in the polynomials are considered and it applied to the structure of the Newton 
polytope of the associated polynomial system (7). In order to obtain the efficiency and
effectiveness in generating the bracket variables   (3) for the entries of the Bèzout block, we
formulated the new conditions for 5-Rule, as follows:
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The formulation of the 5-Rule involves combinatorial approach where 
all the nonzero coefficients in the polynomials are considered and it applied 
to the structure of the Newton polytope of the associated polynomial system 
(7). In order to obtain the efficiency and effectiveness in generating the 
bracket variables            (3) for the entries of the Bèzout block, we formulated 
the new conditions for 5-Rule, as follows:

The bracket variables are rejected if,
•	                                                   and
• 

Applying those conditions in formula (4), the row elements are 
uniquely defined, and the algorithm terminates with the correct matrix 
dimension.

Based on the concepts of divisors and algebraic geometry, a systematic 
approach for homogenising the polynomial equations have been realised 
and designed. Therefore, by Definition 2, the homogeneous coordinate for 
each support of system (7) is constructed for the case h = k = 1, 

row

9

The bracket variables are rejected if,
    or    or    and
     Rule4Rule5 ,,   .

Applying those conditions in formula (4), the row elements are uniquely defined, and the
algorithm terminates with the correct matrix dimension.

Based on the concepts of divisors and algebraic geometry, a systematic approach for
homogenising the polynomial equations have been realised and designed. Therefore, by Definition 
2, the homogeneous coordinate for each support of system (7) is constructed for the case 1 kh
,

row  i   
1    1,3,1,0,00,0 
2    2,2,0,0,10,1 
3    0,2,2,1,01,0 
4    1,1,1,1,11,1 
5    2,0,0,1,21,2 
6    0,0,2,2,12,1 

column

These homogenisation coordinates are in  QS 2int and index the rows of the hybrid resultant
matrix. In (4), given that 23 , RjRk  and 1Ri . The bracket variables are constructed. Starting
with the first exponent,  0,0 we have,

 0,0 0 0 1 3 1
    

1 2 3 4 5

Continuing 5-Rule process, the empirical results for the combinations   ,, of all points
in Q, are shown in Table 2. Definition 3 is used on the construction of the exponent vectors of the
facet variables. The algorithm terminates with the correct matrix dimension and the computational
cost is  3nO .

Table 2: The combination γυ,μ, for all Qα when 1kh 

  51 ,,     ,,
 0,0  0,0,1,3,1 0
 1,0  1,0,0,2,2          1,6,5,1,4,5,1,3,5,1,6,2,1,4,2
 0,1  0,1,2,2,0 0
 1,1  1,1,1,1,1              3,6,5,3,6,2,3,4,5,3,4,2,1,6,5,1,6,4,1,6,2
 1,2  2,0,0,1,2            4,6,5,2,6,5,6,4,2,4,3,5,1,6,5,3,5,2
 2,1  0,0,2,2,1      3,6,5,3,6,4,3,6,2

1 (1, 0)        (1, 0, 0, 2, 2)
2 (1, 0)        (1, 0, 0, 2, 2)
3 (0, 1)        (0, 1, 2, 2, 0)
4 (0, 1)        (1, 1, 1, 1, 1)

5 (2, 1)        (2, 1, 0, 0, 2)
6 (1, 2)        (1, 2, 2, 0, 0)

column

These homogenisation coordinates are in               and index the rows 
of the hybrid resultant matrix. In (4), given that k     R3, j     R2 and  i     R1. 
The bracket variables are constructed. Starting with the first exponent, (0, 
0)  we have, 

		      (0, 0) 					                  
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The formulation of the 5-Rule involves combinatorial approach where all the nonzero
coefficients in the polynomials are considered and it applied to the structure of the Newton 
polytope of the associated polynomial system (7). In order to obtain the efficiency and
effectiveness in generating the bracket variables    (3) for the entries of the Bèzout block, we
formulated the new conditions for 5-Rule, as follows: 
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Applying those conditions in formula (4), the row elements are uniquely defined, and the
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Based on the concepts of divisors and algebraic geometry, a systematic approach for
homogenising the polynomial equations have been realised and designed. Therefore, by Definition 
2, the homogeneous coordinate for each support of system (7) is constructed for the case 1 kh
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The bracket variables are rejected if,
    or    or    and
     Rule4Rule5 ,,   .

Applying those conditions in formula (4), the row elements are uniquely defined, and the
algorithm terminates with the correct matrix dimension.

Based on the concepts of divisors and algebraic geometry, a systematic approach for
homogenising the polynomial equations have been realised and designed. Therefore, by Definition 
2, the homogeneous coordinate for each support of system (7) is constructed for the case 1 kh
,
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These homogenisation coordinates are in  QS 2int and index the rows of the hybrid resultant
matrix. In (4), given that 23 , RjRk  and 1Ri . The bracket variables are constructed. Starting
with the first exponent,  0,0  we have,
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1 2 3 4 5

Continuing 5-Rule process, the empirical results for the combinations   ,, of all points
in Q, are shown in Table 2. Definition 3 is used on the construction of the exponent vectors of the
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Based on the concepts of divisors and algebraic geometry, a systematic approach for
homogenising the polynomial equations have been realised and designed. Therefore, by Definition 
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matrix. In (4), given that 23 , RjRk  and 1Ri . The bracket variables are constructed. Starting
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Continuing 5-Rule process, the empirical results for the combinations   ,, of all points
in Q, are shown in Table 2. Definition 3 is used on the construction of the exponent vectors of the
facet variables. The algorithm terminates with the correct matrix dimension and the computational
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Based on the concepts of divisors and algebraic geometry, a systematic approach for
homogenising the polynomial equations have been realised and designed. Therefore, by Definition 
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These homogenisation coordinates are in  QS 2int and index the rows of the hybrid resultant
matrix. In (4), given that 23 , RjRk  and 1Ri . The bracket variables are constructed. Starting
with the first exponent,  0,0 we have,
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Continuing 5-Rule process, the empirical results for the combinations   ,, of all points
in Q, are shown in Table 2. Definition 3 is used on the construction of the exponent vectors of the
facet variables. The algorithm terminates with the correct matrix dimension and the computational
cost is  3nO .
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Continuing 5-Rule process, the empirical results for the combinations          
    of all points in Q, are shown in Table 2. Definition 3 is used on the 

construction of the exponent vectors of the facet variables. The algorithm 
terminates with the correct matrix dimension and the computational cost is

Table 2: The Combination             for all             when h = k = 1  

(0, 0) (0, 0, 1, 3, 1) 0

(1, 0) (1, 0, 0, 2, 2) (2, 4, 1), (2,6,1), (5, 3, 1), (5, 4, 1), (5, 6, 1)

(0, 1) (0, 1, 2, 2, 0) 0

(1, 1) (1, 1, 1, 1, 1) (2,6,1), (4,6,1), (5,6,1), (2,4,3), (5,4,3), (2,6,3), 
(5,6,3)

(2, 1) (2, 1, 0, 0, 2) (2,5,3), (5,6,1) (5,3,4) (2,4,6), (5,6,2), (5,6,4)
(1, 2) (1, 2, 2, 0, 0) (2,6,3), (4,6,3), (5,6,3)

Main Results

The results on the implementations of the hybrid Sylvester-Bèzout resultant 
matrix are generalised. The main theorem that established the conditions that 
can give a determinantal hybrid resultant formula for the class of unmixed 
bivariate polynomial systems is derived and proven.

Let r, t be non-negative integers and h, k be positive integers. Consider 
the unmixed polynomial system of three equations in two variables of the 
form,

 fi =Ci1 x
r yt + Ci2 x r+h yt + Ci3 x

r yt+k + Ci4 x
r+h yt+k + Ci5 x

r+2h yt+k       (8)
+ Ci6 xr+h yt+2k ,

with i = 1,2,3 and the support of the system is 

A = {(r,t),(r+h,t),(r,t+k),(r+h,t+k),(r+2h,t+k),(r+h,t+2k)}.

9

The bracket variables are rejected if,
    or    or    and
     Rule4Rule5 ,,   .

Applying those conditions in formula (4), the row elements are uniquely defined, and the
algorithm terminates with the correct matrix dimension.

Based on the concepts of divisors and algebraic geometry, a systematic approach for
homogenising the polynomial equations have been realised and designed. Therefore, by Definition 
2, the homogeneous coordinate for each support of system (7) is constructed for the case 1 kh
,

row  i 
1    1,3,1,0,00,0 
2    2,2,0,0,10,1 
3    0,2,2,1,01,0 
4    1,1,1,1,11,1 
5    2,0,0,1,21,2 
6    0,0,2,2,12,1 

column

These homogenisation coordinates are in  QS 2int and index the rows of the hybrid resultant
matrix. In (4), given that 23 , RjRk  and 1Ri . The bracket variables are constructed. Starting
with the first exponent,  0,0 we have,

 0,0 0 0 1 3 1
    

1 2 3 4 5

Continuing 5-Rule process, the empirical results for the combinations   ,,  of all points
in Q, are shown in Table 2. Definition 3 is used on the construction of the exponent vectors of the
facet variables. The algorithm terminates with the correct matrix dimension and the computational
cost is  3nO .

Table 2: The combination γυ,μ, for all Qα when 1kh 

  51 ,,     ,,
 0,0  0,0,1,3,1 0
 1,0  1,0,0,2,2          1,6,5,1,4,5,1,3,5,1,6,2,1,4,2
 0,1  0,1,2,2,0 0
 1,1  1,1,1,1,1              3,6,5,3,6,2,3,4,5,3,4,2,1,6,5,1,6,4,1,6,2
 1,2  2,0,0,1,2            4,6,5,2,6,5,6,4,2,4,3,5,1,6,5,3,5,2
 2,1  0,0,2,2,1      3,6,5,3,6,4,3,6,2 9

The bracket variables are rejected if,
    or    or    and
     Rule4Rule5 ,,   .

Applying those conditions in formula (4), the row elements are uniquely defined, and the
algorithm terminates with the correct matrix dimension.

Based on the concepts of divisors and algebraic geometry, a systematic approach for
homogenising the polynomial equations have been realised and designed. Therefore, by Definition 
2, the homogeneous coordinate for each support of system (7) is constructed for the case 1 kh
,
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These homogenisation coordinates are in  QS 2int and index the rows of the hybrid resultant
matrix. In (4), given that 23 , RjRk  and 1Ri . The bracket variables are constructed. Starting
with the first exponent,  0,0 we have,

 0,0 0 0 1 3 1
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Continuing 5-Rule process, the empirical results for the combinations   ,, of all points
in Q, are shown in Table 2. Definition 3 is used on the construction of the exponent vectors of the
facet variables. The algorithm terminates with the correct matrix dimension and the computational
cost is  3nO .
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     Rule4Rule5 ,,   .

Applying those conditions in formula (4), the row elements are uniquely defined, and the
algorithm terminates with the correct matrix dimension.

Based on the concepts of divisors and algebraic geometry, a systematic approach for
homogenising the polynomial equations have been realised and designed. Therefore, by Definition 
2, the homogeneous coordinate for each support of system (7) is constructed for the case 1 kh
,
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These homogenisation coordinates are in  QS 2int and index the rows of the hybrid resultant
matrix. In (4), given that 23 , RjRk  and 1Ri . The bracket variables are constructed. Starting
with the first exponent,  0,0 we have,

 0,0 0 0 1 3 1
    

1 2 3 4 5

Continuing 5-Rule process, the empirical results for the combinations   ,, of all points
in Q, are shown in Table 2. Definition 3 is used on the construction of the exponent vectors of the
facet variables. The algorithm terminates with the correct matrix dimension and the computational
cost is  3nO .

Table 2: The combination γυ,μ,  for all Qα when 1kh 

  51 ,,     ,,
 0,0  0,0,1,3,1 0
 1,0  1,0,0,2,2          1,6,5,1,4,5,1,3,5,1,6,2,1,4,2
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    or    or    and
     Rule4Rule5 ,,   .

Applying those conditions in formula (4), the row elements are uniquely defined, and the
algorithm terminates with the correct matrix dimension.

Based on the concepts of divisors and algebraic geometry, a systematic approach for
homogenising the polynomial equations have been realised and designed. Therefore, by Definition 
2, the homogeneous coordinate for each support of system (7) is constructed for the case 1 kh
,

row  i 
1    1,3,1,0,00,0 
2    2,2,0,0,10,1 
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These homogenisation coordinates are in  QS 2int and index the rows of the hybrid resultant
matrix. In (4), given that 23 , RjRk  and 1Ri . The bracket variables are constructed. Starting
with the first exponent,  0,0 we have,
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1 2 3 4 5

Continuing 5-Rule process, the empirical results for the combinations   ,, of all points
in Q, are shown in Table 2. Definition 3 is used on the construction of the exponent vectors of the
facet variables. The algorithm terminates with the correct matrix dimension and the computational
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 1,0  1,0,0,2,2          1,6,5,1,4,5,1,3,5,1,6,2,1,4,2
 0,1  0,1,2,2,0 0
 1,1  1,1,1,1,1              3,6,5,3,6,2,3,4,5,3,4,2,1,6,5,1,6,4,1,6,2
 1,2  2,0,0,1,2            4,6,5,2,6,5,6,4,2,4,3,5,1,6,5,3,5,2
 2,1  0,0,2,2,1      3,6,5,3,6,4,3,6,2
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The bracket variables are rejected if,
    or    or    and
     Rule4Rule5 ,,   .

Applying those conditions in formula (4), the row elements are uniquely defined, and the
algorithm terminates with the correct matrix dimension.

Based on the concepts of divisors and algebraic geometry, a systematic approach for
homogenising the polynomial equations have been realised and designed. Therefore, by Definition 
2, the homogeneous coordinate for each support of system (7) is constructed for the case 1 kh
,

row  i 
1    1,3,1,0,00,0 
2    2,2,0,0,10,1 
3    0,2,2,1,01,0 
4    1,1,1,1,11,1 
5    2,0,0,1,21,2 
6    0,0,2,2,12,1 

column

These homogenisation coordinates are in  QS 2int and index the rows of the hybrid resultant
matrix. In (4), given that 23 , RjRk  and 1Ri . The bracket variables are constructed. Starting
with the first exponent,  0,0 we have,

 0,0 0 0 1 3 1
    

1 2 3 4 5

Continuing 5-Rule process, the empirical results for the combinations   ,, of all points
in Q, are shown in Table 2. Definition 3 is used on the construction of the exponent vectors of the
facet variables. The algorithm terminates with the correct matrix dimension and the computational
cost is  3nO .
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with the first exponent,  0,0 we have,

 0,0 0 0 1 3 1
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Continuing 5-Rule process, the empirical results for the combinations   ,, of all points
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  51 ,,     ,,
 0,0  0,0,1,3,1  0
 1,0  1,0,0,2,2          1,6,5,1,4,5,1,3,5,1,6,2,1,4,2
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If  h = k, the system (8) whose support is reduced to

A = {(r,t), (r+h,t),(r,t+k),(r,+2h,t+k),(r+h,t+2k)}.

Observing the results of the implementation gives the following theorem.

Theorem 4. Let r, t    0, where r, t    Z and let h     Z+  . Let  f1,   f2,  and  f 3 be an 
unmixed polynomial system with support  A = {(r,t),(r + h,t), (r,t + h), (r + 
h,t + h), (r + 2h,t + h), (r + h,t + 2h)}. For each i = 1,...,6 the homogeneous 
coordinate of  ei   for r = t = 0 equals the homogeneous coordinate of ei  for 
any r > 0 or t > 0. 

Proof. The Newton polytope of A and the respective normal vector vi is 
shown in Fig. 2 where v1 = (1,0), v2 = (0,1), v3 = (-1,1), v4 = (-1,-1), and v5 = 
(1,-1). From (6) the convex hull of A is the Newton polytope Q is defined by 
ai =                      and the Q-homogenisation map      : Z2      Z5 is defined by

                                for i = 1,...,5. 

Taking (r,t) = 0, the homogeneous coordinates for each element of A,
                       (0,0) = (0,0,h,3h,h) = h(0,0,1,3,1)
                       (h,0) = (h,0,0,2h,2h) = h(1,0,0,2,2)
                       (0,h) = (0,h,2h,2h,0) = h(0,1,2,2,0)      
                       (h,h) = (h,h,h,h,h) = h(1,1,1,1,1)
                       (2h,h) = (2h,h,0,0,2h) = h(2,1,0,0,2)
                       (h,2h) = (h,2h,2h,0,0) = h(i,2,2,0,0)

Let r,t > 0. Let a = (r,t), then the homogeneous coordinates for each 
element of A, 
 		  (a)1 = <(r,t), (1,0)> + (-r) = 0
            	 (a)2 = <(r,t), (0,1)> + (-r) = 0
            	 (a)3 = <(r,t), (-1,1)> + (r-t + h) = h
            	 (a)4  = <(r,t), (-1,-1)> + (r + t + 3h) = 3h
            	 (a)5 = <(r,t), (1,-1)> + (-r + t + h) + h
                 	 (r,t) = (0,0,h,3h,h).

Continuing the same computation for other exponent vectors the 
following homogeneous coordinates are derived for each a ,      (r + h,t) 
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        01,0,,1  rtrQ   
        00,1,,2  rtrQ   
        hhtrtrQ  1,1,,3  
        hhtrtrQ 331,1,,4   
        hhtrtrQ  1,1,,5  
   hhhtrQ ,3,,0,0,  . 

 Continuing the same computation for other exponent vectors the following homogeneous 
coordinates are derived for each ,    hhhthrQ 2,2,0,0,,  ,    0,2,2,,0, hhhhtrQ  ,

   hhhhhhthrQ ,,,,,  ,    hhhhthrQ 2,0,0,,2,2   and    0,0,2,2,2, hhhhthrQ  . 
 

Thus,  
     1,3,1,0,0,0,0  trQQ    
     2,2,0,0,1,0,  thrh QQ   
     0,2,2,1,0,,0  htrh QQ   
     1,1,1,1,1,,  hthrhh QQ    
     2,0,0,1,2,2,2  hthrhh QQ   
     0,0,2,2,12,2,  hthrhh QQ  .    

 
Theorem 5. Let ,1f 2f  and 3f  be	 an	 unmixed	 polynomial	 system	 with	 support	

            hhhhhhhhA 2,,,2,,,,0,0,,0,0 . For each 6,,1i  the homogeneous coordinate of ie  for 
1h  equals the homogeneous coordinate of ie  for	any	h	>	1. 

Proof. For 1h , name the support of the system 1A  given by             2,1,1,2,1,1,1,0,0,1,0,0A . 
Homogeneous coordinate for each element of 1A ,    1,3,1,0,00,0 Q ,    2,2,0,0,10,1 Q ,

   0,2,2,1,01,0 Q ,    1,1,1,1,11,1 Q ,    2,0,0,1,21,2 Q ,    0,0,2,2,12,1 Q . 
 
 Taking h > 1, the homogeneous coordinates of each element of hA  are,

   2,2,0,0,10, hhQ  ,    0,2,2,1,0,0 hhQ  ,    1,1,1,1,1, hhhQ  ,    2,0,0,1,2,2 hhhQ  , 
   0,0,2,2,12, hhhQ  .  

 
Theorem 4 illustrates that scaling the edges of 1A h times gives the same homogeneous 

coordinate since for all hi Ae ˆ ,      iii eehe  ˆ  by Definition 1. Each homogeneous 
coordinate is a point in 4P which is written uniquely up to multiplication by *C . Here h . 
Example 2.  Consider the following nonlinear unmixed system, 

24
6

42
15

22
4

2
3

2
21 yxbyxbyxbybxbbf iiiiii  , 3,2,1i . 

This system is generated when h = 2 (h > 1) and gives support 
            4,2,2,4,2,2,2,0,0,2,0,0A . 

By Definition 2, the homogeneous coordinates for each support are shown in Table 3. 
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Main Results 
 
The results on the implementations of the hybrid Sylvester-Bèzout resultant matrix are 

generalised. The main theorem that established the conditions that can give a determinantal hybrid 
resultant formula for the class of unmixed bivariate polynomial systems is derived and proven. 

 
Let r, t be non-negative integers and h, k be positive integers. Consider the unmixed 

polynomial system of three equations in two variables of the form, 
 

kthr
i

kthr
i

kthr
i

ktr
i

thr
i

tr
ii yxCyxCyxCyxCyxCyxCf 2

6
2

54321
  , (8) 

 
with 1,2,3i  and the support of the system is 

            kthrkthrkthrktrthrtrA 2,,,2,,,,,,,,  . 
 

If kh  , the system (8) whose support is reduced to 
 

            hthrhthrhthrhtrthrtrA 2,,,2,,,,,,,,  . 
 
Observing the results of the implementation gives the following theorem. 
Theorem 4. Let 0, tr ,	 where	 Ztr, and let Zh . Let ,1f 2f  and 3f  be an unmixed 
polynomial	system	with	support	             hthrhthrhthrhtrthrtrA 2,,,2,,,,,,,,  . 
For each 6,,1i  the homogeneous coordinate of ie  for 0 tr  equals the homogeneous 
coordinate of ie  for	any	r	>	0	or	t	>	0.	 
Proof. The Newton polytope of A and the respective normal vector i  is shown in Fig. 2 where 

   ,0,11   ,1,02   ,1,13   1,14   and  1,15  . From (6) the convex hull of A is the 
Newton polytope Q is defined by 


iQmi ma ,min and the Q-homogenisation map 52: ZZ Q is 

defined by  
  iiiQ a  ,  for 5,,1 i .  

 
Taking  tr, = 0, the homogeneous coordinates for each element of A, 

     0,0,1,3,1,3,,0,00,0 hhhhQ   
     1,0,0,2,22,2,0,0,0, hhhhhQ   
     0,1,2,2,00,2,2,,0,0 hhhhhQ   
     1,1,1,1,1,,,,, hhhhhhhhQ   
     2,1,0,0,22,0,0,,2,2 hhhhhhQ   
     1,2,2,0,00,0,2,2,2, hhhhhhQ  . 

 
 Let 0, tr . Let  tr, , then the homogeneous coordinates for each element of A,  
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The bracket variables are rejected if, 
     or     or     and 
     Rule4Rule5   ,  ,   . 

 
Applying those conditions in formula (4), the row elements are uniquely defined, and the 

algorithm terminates with the correct matrix dimension. 
 
Based on the concepts of divisors and algebraic geometry, a systematic approach for 

homogenising the polynomial equations have been realised and designed. Therefore, by Definition 
2, the homogeneous coordinate for each support of system (7) is constructed for the case 1 kh
, 

 
row  i   

1    1,3,1,0,00,0   
2    2,2,0,0,10,1   
3    0,2,2,1,01,0   
4    1,1,1,1,11 ,1   
5    2,0,0,1,21,2   
6    0,0,2,2,12,1   

 column 
 
These homogenisation coordinates are in  QS 2int  and index the rows of the hybrid resultant 

matrix. In (4), given that 23  , RjRk   and 1Ri . The bracket variables are constructed. Starting 
with the first exponent,  0,0  we have, 

 0,0  0    0    1   3    1 
                                   
           1  2  3  4  5  
 
Continuing 5-Rule process, the empirical results for the combinations   ,,  of all points 

in Q, are shown in Table 2. Definition 3 is used on the construction of the exponent vectors of the 
facet variables. The algorithm terminates with the correct matrix dimension and the computational 
cost is  3nO . 

 
Table 2: The combination γυ,μ,  for all Qα  when 1kh   
   51 ,,      ,,  

 0,0   0,0,1,3,1  0 
 1,0   1,0,0,2,2           1,6,5,1,4,5,1,3,5,1,6,2,1,4,2  
 0,1   0,1,2,2,0  0 
 1 ,1   1,1,1,1,1               3,6,5,3,6,2,3,4,5,3,4,2,1,6,5,1,6,4,1,6,2  
 1,2   2,0,0,1,2             4,6,5,2,6,5,6,4,2,4,3,5,1,6,5,3,5,2  
 2,1   0,0,2,2,1       3,6,5,3,6,4,3,6,2  
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= (h,0,0,2h,2h) ,     (r,t + h) = (0,h,2h,2h,0),      (r + h,t + h) = (h,h,h,h,h),            
(r + 2h,t + h) = (2h,h 0,0,2h) and       (r + h,t + 2h) = (h,2h,2h,0,0)

Thus, 
  
 
 
  
 
 		

Theorem 5. Let   f1, f2 and f3 be an unmixed polynomial system with 
support A = {(0,0), (h,0), (0,h), (h,h), (2h,h), (h,2h)} . For each i = 1,...,6   
the homogeneous coordinate of  e1    for h= 1, equals the homogeneous 
coordinate of  e1  for any h > 1.

Proof. For h = 1 , name the support of the system A1 given by A = {(0
,0),(1,0),(0,1),(1,1),(2,1),(1,2)}. Homogeneous coordinate for each element 
of A1,          (0,0) = (0,0,1,3,1),      (1,0) = (1,0,0,2,2),      (0,1) = (0,1,2,2,0),                               

(1,1) = (1,1,1,1,1),     (2,1) = (2,1,0,0,2),      (1,2) =(1,2,2,0,0).

Taking h > 1, the homogeneous coordinates of each element of  Ah 
are       (h,0) = h(1,0,0,2,2),        (0,h) = h(0,1,2,2,0),      (h,h) = h(1,1,1,1,1),                    

(2h,h) = h(2,1,0,0,2),      (h,2h) = h(1,2,2,0,0).     

Theorem 4 illustrates that scaling the edges of  A1h times gives the same 
homogeneous coordinate since for all         Ah  ,                                      by 
Definition 1. Each homogeneous coordinate is a point in P4 which is written 
uniquely up to multiplication by

Example 2. Consider the following nonlinear unmixed system,

            fi  = bi1 + bi2 x
2 + bi3 y

2 + bi4 x
2 y2 + b15 x

2 y2 , i = 1,2,3.
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        01,0,,1  rtrQ   
        00,1,,2  rtrQ   
        hhtrtrQ  1,1,,3  
        hhtrtrQ 331,1,,4   
        hhtrtrQ  1,1,,5  
   hhhtrQ ,3,,0,0,  . 

 Continuing the same computation for other exponent vectors the following homogeneous 
coordinates are derived for each ,    hhhthrQ 2,2,0,0,,  ,    0,2,2,,0, hhhhtrQ  ,

   hhhhhhthrQ ,,,,,  ,    hhhhthrQ 2,0,0,,2,2   and    0,0,2,2,2, hhhhthrQ  . 
 

Thus,  
     1,3,1,0,0,0,0  trQQ    
     2,2,0,0,1,0,  thrh QQ   
     0,2,2,1,0,,0  htrh QQ   
     1,1,1,1,1,,  hthrhh QQ    
     2,0,0,1,2,2,2  hthrhh QQ   
     0,0,2,2,12,2,  hthrhh QQ  .    

 
Theorem 5. Let ,1f 2f  and 3f  be	 an	 unmixed	 polynomial	 system	 with	 support	

            hhhhhhhhA 2,,,2,,,,0,0,,0,0 . For each 6,,1i  the homogeneous coordinate of ie  for 
1h  equals the homogeneous coordinate of ie  for	any	h	>	1. 

Proof. For 1h , name the support of the system 1A  given by             2,1,1,2,1,1,1,0,0,1,0,0A . 
Homogeneous coordinate for each element of 1A ,    1,3,1,0,00,0 Q ,    2,2,0,0,10,1 Q ,

   0,2,2,1,01,0 Q ,    1,1,1,1,11,1 Q ,    2,0,0,1,21,2 Q ,    0,0,2,2,12,1 Q . 
 
 Taking h > 1, the homogeneous coordinates of each element of hA  are,

   2,2,0,0,10, hhQ  ,    0,2,2,1,0,0 hhQ  ,    1,1,1,1,1, hhhQ  ,    2,0,0,1,2,2 hhhQ  , 
   0,0,2,2,12, hhhQ  .  

 
Theorem 4 illustrates that scaling the edges of 1A h times gives the same homogeneous 

coordinate since for all hi Ae ˆ ,      iii eehe  ˆ  by Definition 1. Each homogeneous 
coordinate is a point in 4P which is written uniquely up to multiplication by *C . Here h . 
Example 2.  Consider the following nonlinear unmixed system, 

24
6

42
15

22
4

2
3

2
21 yxbyxbyxbybxbbf iiiiii  , 3,2,1i . 

This system is generated when h = 2 (h > 1) and gives support 
            4,2,2,4,2,2,2,0,0,2,0,0A . 

By Definition 2, the homogeneous coordinates for each support are shown in Table 3. 10 
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   hhhtrQ ,3,,0,0,  . 

 Continuing the same computation for other exponent vectors the following homogeneous 
coordinates are derived for each ,    hhhthrQ 2,2,0,0,,  ,    0,2,2,,0, hhhhtrQ  ,
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Thus,  
     1,3,1,0,0,0,0  trQQ    
     2,2,0,0,1,0,  thrh QQ   
     0,2,2,1,0,,0  htrh QQ   
     1,1,1,1,1,,  hthrhh QQ    
     2,0,0,1,2,2,2  hthrhh QQ   
     0,0,2,2,12,2,  hthrhh QQ  .    

 
Theorem 5. Let ,1f 2f  and 3f  be	 an	 unmixed	 polynomial	 system	 with	 support	

            hhhhhhhhA 2,,,2,,,,0,0,,0,0 . For each 6,,1i  the homogeneous coordinate of ie  for 
1h  equals the homogeneous coordinate of ie  for	any	h	>	1. 

Proof. For 1h , name the support of the system 1A  given by             2,1,1,2,1,1,1,0,0,1,0,0A . 
Homogeneous coordinate for each element of 1A ,    1,3,1,0,00,0 Q ,    2,2,0,0,10,1 Q ,

   0,2,2,1,01,0 Q ,    1,1,1,1,11,1 Q ,    2,0,0,1,21,2 Q ,    0,0,2,2,12,1 Q . 
 
 Taking h > 1, the homogeneous coordinates of each element of hA  are,

   2,2,0,0,10, hhQ  ,    0,2,2,1,0,0 hhQ  ,    1,1,1,1,1, hhhQ  ,    2,0,0,1,2,2 hhhQ  , 
   0,0,2,2,12, hhhQ  .  

 
Theorem 4 illustrates that scaling the edges of 1A h times gives the same homogeneous 

coordinate since for all hi Ae ˆ ,      iii eehe  ˆ  by Definition 1. Each homogeneous 
coordinate is a point in 4P which is written uniquely up to multiplication by *C . Here h . 
Example 2.  Consider the following nonlinear unmixed system, 
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21 yxbyxbyxbybxbbf iiiiii  , 3,2,1i . 

This system is generated when h = 2 (h > 1) and gives support 
            4,2,2,4,2,2,2,0,0,2,0,0A . 

By Definition 2, the homogeneous coordinates for each support are shown in Table 3. 

11 

 

        01,0,,1  rtrQ   
        00,1,,2  rtrQ   
        hhtrtrQ  1,1,,3  
        hhtrtrQ 331,1,,4   
        hhtrtrQ  1,1,,5  
   hhhtrQ ,3,,0,0,  . 

 Continuing the same computation for other exponent vectors the following homogeneous 
coordinates are derived for each ,    hhhthrQ 2,2,0,0,,  ,    0,2,2,,0, hhhhtrQ  ,

   hhhhhhthrQ ,,,,,  ,    hhhhthrQ 2,0,0,,2,2   and    0,0,2,2,2, hhhhthrQ  . 
 

Thus,  
     1,3,1,0,0,0,0  trQQ    
     2,2,0,0,1,0,  thrh QQ   
     0,2,2,1,0,,0  htrh QQ   
     1,1,1,1,1,,  hthrhh QQ    
     2,0,0,1,2,2,2  hthrhh QQ   
     0,0,2,2,12,2,  hthrhh QQ  .    

 
Theorem 5. Let ,1f 2f  and 3f  be	 an	 unmixed	 polynomial	 system	 with	 support	

            hhhhhhhhA 2,,,2,,,,0,0,,0,0 . For each 6,,1i  the homogeneous coordinate of ie  for 
1h  equals the homogeneous coordinate of ie  for	any	h	>	1. 

Proof. For 1h , name the support of the system 1A  given by             2,1,1,2,1,1,1,0,0,1,0,0A . 
Homogeneous coordinate for each element of 1A ,    1,3,1,0,00,0 Q ,    2,2,0,0,10,1 Q ,

   0,2,2,1,01,0 Q ,    1,1,1,1,11,1 Q ,    2,0,0,1,21,2 Q ,    0,0,2,2,12,1 Q . 
 
 Taking h > 1, the homogeneous coordinates of each element of hA  are,

   2,2,0,0,10, hhQ  ,    0,2,2,1,0,0 hhQ  ,    1,1,1,1,1, hhhQ  ,    2,0,0,1,2,2 hhhQ  , 
   0,0,2,2,12, hhhQ  .  

 
Theorem 4 illustrates that scaling the edges of 1A h times gives the same homogeneous 

coordinate since for all hi Ae ˆ ,      iii eehe  ˆ  by Definition 1. Each homogeneous 
coordinate is a point in 4P which is written uniquely up to multiplication by *C . Here h . 
Example 2.  Consider the following nonlinear unmixed system, 

24
6

42
15

22
4

2
3

2
21 yxbyxbyxbybxbbf iiiiii  , 3,2,1i . 

This system is generated when h = 2 (h > 1) and gives support 
            4,2,2,4,2,2,2,0,0,2,0,0A . 

By Definition 2, the homogeneous coordinates for each support are shown in Table 3. 

11 

 

        01,0,,1  rtrQ   
        00,1,,2  rtrQ   
        hhtrtrQ  1,1,,3  
        hhtrtrQ 331,1,,4   
        hhtrtrQ  1,1,,5  
   hhhtrQ ,3,,0,0,  . 

 Continuing the same computation for other exponent vectors the following homogeneous 
coordinates are derived for each ,    hhhthrQ 2,2,0,0,,  ,    0,2,2,,0, hhhhtrQ  ,

   hhhhhhthrQ ,,,,,  ,    hhhhthrQ 2,0,0,,2,2   and    0,0,2,2,2, hhhhthrQ  . 
 

Thus,  
     1,3,1,0,0,0,0  trQQ    
     2,2,0,0,1,0,  thrh QQ   
     0,2,2,1,0,,0  htrh QQ   
     1,1,1,1,1,,  hthrhh QQ    
     2,0,0,1,2,2,2  hthrhh QQ   
     0,0,2,2,12,2,  hthrhh QQ  .    

 
Theorem 5. Let ,1f 2f  and 3f  be	 an	 unmixed	 polynomial	 system	 with	 support	

            hhhhhhhhA 2,,,2,,,,0,0,,0,0 . For each 6,,1i  the homogeneous coordinate of ie  for 
1h  equals the homogeneous coordinate of ie  for	any	h	>	1. 

Proof. For 1h , name the support of the system 1A  given by             2,1,1,2,1,1,1,0,0,1,0,0A . 
Homogeneous coordinate for each element of 1A ,    1,3,1,0,00,0 Q ,    2,2,0,0,10,1 Q ,

   0,2,2,1,01,0 Q ,    1,1,1,1,11,1 Q ,    2,0,0,1,21,2 Q ,    0,0,2,2,12,1 Q . 
 
 Taking h > 1, the homogeneous coordinates of each element of hA  are,

   2,2,0,0,10, hhQ  ,    0,2,2,1,0,0 hhQ  ,    1,1,1,1,1, hhhQ  ,    2,0,0,1,2,2 hhhQ  , 
   0,0,2,2,12, hhhQ  .  

 
Theorem 4 illustrates that scaling the edges of 1A h times gives the same homogeneous 

coordinate since for all hi Ae ˆ ,      iii eehe  ˆ  by Definition 1. Each homogeneous 
coordinate is a point in 4P which is written uniquely up to multiplication by *C . Here h . 
Example 2.  Consider the following nonlinear unmixed system, 

24
6

42
15

22
4

2
3

2
21 yxbyxbyxbybxbbf iiiiii  , 3,2,1i . 

This system is generated when h = 2 (h > 1) and gives support 
            4,2,2,4,2,2,2,0,0,2,0,0A . 

By Definition 2, the homogeneous coordinates for each support are shown in Table 3. 
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This system is generated when h = 2 (h > 1) and gives support A = 
{(0,0), (2,0), (0,2), (2,2), (4,2), (2,4)}. By Definition 2, the homogeneous 
coordinates for each support are shown in Table 3.

Table 3: Homogeneous Coordinates

Exponent vector 
               a

Homogeneous coordinate  
(a1,...,a5)

(0, 0) (0, 0, 2, 6, 2) = 2(0, 0, 1, 3, 1)
(2, 0) (2, 0, 0, 4, 4) = 2(1, 0, 0, 2, 2)
(0, 2) (0, 2, 4, 4, 0) = 2(0, 1, 2, 2, 0)
(2, 2) (2, 2, 2, 2, 2) = 2(1, 1, 1, 1, 1)
(4, 2) (4, 2, 0, 0, 4) = 2(2, 1, 0, 0, 2)
(2, 4) (2, 4, 4, 0, 0) = 2(1, 2, 2, 0, 0)

This example showed that by scaling the edges, h = 2 times gives 
the same homogeneous coordinate for h = 1.

Conclusion 

The concepts in algebraic geometry were highlighted through the 
construction of Bèzout matrix. The implementation of the algorithm of 
Bèzout matrix is on the unmixed bivariate polynomial systems of the form 
equation (8) by considering the origin as the distinguished point of the 
Newton polytope. Detail implementation and construction are presented 
to indicate that, it is sufficient to consider only the case when r = t = 0 and 
h = k  and scaling the edges of A1, h times gives the same homogeneous 
coordinate.
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