Error Detection and Correction
System (EDAC) of On Board
Data Handling (OBDH) in Real
Time Operating System Behaviour

Haryono', Agfianto Eko Putra?,
Jazi Eko Istiyanto?, and Agus Harjoko?

Satellite Centre’, National Institute of Aeronautics and Space (LAPAN),
JI Satelit KM 04 Rancabungur Bogor
Department of Computer Science,

Faculty of Mathematics and Natural Sciences?,
Gadjah Mada University (UGM),
Sekip Utara Kotak Pos 21 Bulaksumur Yogkayakarta
'Email: haryono@hryn.net

ABSTRACT

The satellite requires the support of a robust sub system. On Board Data
Handling (OBDH) is the core function of the satellite subsystem and has to
be error free in managing the operation of the satellite. It should withstand
the harsh environmental conditions in space that has a lot of hazards caused
by radiations. In view of these two conditions, the OBDH design should
be able to manage the operation and overcome the hazards of radiation. In
order to manage the operation Real Time Operating System (RTOS) was
applied. RTOS was able to manage the task efficiently and effectively. In
the aerospace domain, RTOS has become popular because of its strength
in managing the operating system. Error Detection and Correction System
(EDAC) system was applied to make OBDH more robust. This paper
discusses the implementation of the EDAC system in tandem with the
RTOS behaviour to manage the operation and increase the robustness of
the system. The findings show that OBDH can be programmed successfully
using RTOS to handle critical and robust operations.

Keywords: EDAC, uCos, Real Time Operating System, SH7145, OBDH

ScienTiFic RESEARCH JOURNAL

INTRODUCTION

Super loop can be replaced by a multitasking system, referred to as Real
Time Operating System (RTOS). In the aerospace domain, RTOS has
become popular because of its reputable capability in managing the operation
system [1]. When programming the embedded system initially, the super
loop method is used, but this super loop method displayed some weaknesses.
The super loop had trouble when a parallel manner function was executed.
This could be because in the super loop the executing function is naturally
in serial program; the time taken to switch to other functions is influenced
by ISR [2]. However, with RTOS, each task can run concurrently. The task
also gives guarantees that the function of ISR on both sides to be in an
active state all the time [2].

There are some other types of RTOS, Pre-emptive and Cooperative
Scheduling. Both systems have their advantages and disadvantages. This
study will look at the possibility of applying the most compatible system
to apply in the OBDH. Cooperative Scheduling implies working together,
the resource of the system should be maintained cooperatively [2]. It has to
be cooperative in switching the task, because of the cooperative aspect, the
disadvantage is the highest priority task cannot run directly until the low
priority task gives the resources to other task explicitly [2]. Pre-emptive
Scheduling, low priority operations can be switched directly to the higher
priority or ISR without permission from the task being performed. This
method will lead to complexity of the system, the task is pre-empted and
all information should be saved properly before moving on to the next task,
hence requiring more resources [2]. The efficiency of the responsiveness
reduces waiting time for other operations to use the system. In terms of
our OBDH, we need the system to be responsive and react immediately
therefore, the Pre-emptive Scheduling was selected and incorporated in
the design.

Hamming error correcting codes was used to protect memory because
it is relatively inexpensive, very efficient, and creates less redundancy [3].
The advantage of the Hamming code is that, it is faster and simple, coding
does not require a lot of calculation. The other reasons are, it is useful on
short messages, synchronizes with this task to handle command from ground
segment and handle Global Positioning Satellite data. It has been used

18

Vot. 10, No. 2, Dec 2013

by HAUSAT-2 satellite [4] and ISTNanosat-1 satellite [5]. Therefore, the
Hamming code was chosen to store the data in to memory for this project.

By applying the RTOS and EDAC, the satellite can be programmed
easily, efficiently and more robust.

EDAC System Connectivity Design

This section discusses the method of EDAC software in handling
Global Positioning Satellite (GPS) and Ground Segment (GS) command
data, detail flowchart is shown in Figure 1.

1. Receive data command from GS through Telemetry Tracking and
Command (TTC) and from GPS receiver.

2. Decode and Save data from GS and GPS receiver using Hamming
Code in memory.

3. Open and Decode data from memory and then send to appropriate
destination,

TTC GPS Rec

y y

Receiving Process: Decode & Save
GS DATA »| (Hamming Code) ¥
&

A

GPS DATA
Send to the appropriate | Open &
destination - Decode

Figure 1: Software Flowchart of Hamming Code implementation

19

ScientiFic RESEARCH JOURNAL

RTOS Design

This section discusses the design of RTOS in OBDH in handling
the various tasks. This project is focused on three important tasks; first
is handling the GPS data, the Second, handling the GS data and third,
handling the EDAC system for the GS data and GPS data. SH7145 from
Renesas is the microcontroller used, the tool is High-performance Embedded
Workshop (IDE) HEW and the tool chain is Renesas sh2. Figure 2 describes
the operation.

Input: GPS Output: GPS Data is sent
Receiver to EDAC System Task
Input: Output: GS Data is sent
TIC to EDAC System Task
Input: GPS | Output: GPS Data is

and GS Data saved to the memory

Figure 2: Tasks being Run
EDAC Implementation

GS and GPS Data received are encoded and saved in the bank
memory. In order to protect the data from errors, the hamming code was
implemented. This section discusses algorithm of the Hamming Code that
as in [6]. Number of hamming bits depends on the number of message bits.
“n” is total number of bits transmitted and “m” is total number of hamming
bit. The formula is given below;

2Zmzn+1

Example: Message has 4 data bits

2">(@4+m)+1
22>([4+3)+1

20

VoL. 10, No. 2, Dec 2013
Therefore, 3 is the smallest number of hamming bit.
Encoding Part
Original message => 1101 (4 bits)
Step 1: Compute the no. of hamming bits (m)
22>(4+3)+1;m=3; therefore n =7

Step 2: Insert hamming bits (H) into the original message stream. Use
the formula in the table 1 and calculate the data in Table 2.

P1 (Parity 1) = D3 XOR D5 XOR D7
P2 (Parity 2) = D3 XOR D6 XOR D7
P4 (Parity 3) = D5 XOR D6 XOR D7
Code stream that will be sent: D7 D6 D5 P4 D3 P2 P1

Example: Message bit: 1101

Step 3: The code bit stream: 1100110

Decode Part

Bit Position :76 54321 (7 bits)
Actual Data :1100110
Occurringerror :11 10110

Supposed position number 5 is error.
Step 1: Calculating the message stream

C1 =PIl XOR D3 XOR D5 XOR D7
C2 = P2 XOR D3 XOR D6 XOR D7
C4 = P4 XOR D5 XOR D6 XOR D7
C1 =0”17171=1
C2 = 1*"1*171=0
C4 = 0*17171=1

21

ScIENTIFIC RESEARCH JOURNAL

Step 2: Finding the error, if the calculation result is not “0” it mens
an error in the data, so flip to data according the data calculation. C4C2C1
=1x22+ 0x2'+ 1x2°=5

Now, we can correct the error bit in position 5, so definitely it is
not 1 but 0.

RTOS Implementation

In this project, three important tasks were created: TASK 1: GPS data
Processing, TASK 2: GS data Processing, and TASK 3: EDAC Processing.

The RTOS selected is wCOS from Micirum, it is Pre-empted system,
well known RTOS, has been validated by FAA [1] and proper for safety-
critical systems for leading aerospace. Each TASK is run simultaneously.

Below is the source for the uCOS RTOS in creating each task:

OSTaskCreateExt(GS_Data_Process, // task name

(void *)0,

(OS_STK *)&AppTask2Stk[APP_START TASK_STK_SIZE - 1],
APP_START TASKI1_PRIO, //Task Priority

APP_START TASKI1_ID, //Task ID

(OS_STK *)&AppTask2Stk{0], // pointer to the lowest stack
APP_START TASK _STK_SIZE, // stack task size

(void *)0,

OS_TASK_OPT STK_CHK | OS_TASK_OPT STK_CLR); //allow to
check stack

OSTaskCreateExt(GPS_Data_Process,

(void *)0,

(OS_STK *)&AppTaskiStk[APP_START TASK_STK_SIZE - 1],
APP_START TASK2 PRIO,

APP_START TASK2_ID,

(0S_STK *)&AppTask1Stk[0],

APP_START TASK_STK_SIZE,

(void *)0,

OS_TASK_OPT STK_CHK | OS_TASK_OPT STK_CLR);

22

Vou. 10, No. 2, Dec 2013

OSTaskCreateExt(EDAC_Process,

(void *)0,

(OS_STK *)&AppTask3Stk[APP_START TASK_STK_SIZE - 1],
APP_START TASK3 PRIO,

APP_START _TASK3_ID,

(OS_STK *)&AppTask2Stk[0],

APP_START TASK _STK_SIZE,

(void *)0,

OS _TASK_OPT _STK_CHK | OS_TASK_OPT STK_CLR);

Based on this source code above, each task was created and given a
different priority, below are the detail priority:

TASK 1: GS data Processing (Highest Priority): to ensure the
command data from the ground should be handled first, the command is
critical for example to shutdown the sub system because the battery is low.

TASK 2: GPS data Processing (Middle Priority): to consider GPS
Data Processing and to ensure that the data can be acquired properly.

TASK 3: EDAC Processing (Low Priority) considered as low
priority, this task should run correctly, but the priority impact should be
set to the natural sequence. We consider the two tasks above more risky if
the task is not comparable to the EDAC Processing. Data received in the
buffer can be interrupted by other task, upon completion of the task the
system will continue the EDAC Processing.

Programming each Task

GS_Data_Process TASK will work upon receiving the message from
the ISR receiver data (Rx2), the task will be suspended and delayed in each
100 millisecond. The GS data will be sent to the EDAC_Process TASK to
be encoded with hamming code.

void GS_Data_Process (void *p_arg)
{
unsigned char *msg;
char err;
while (1) {
msg = (INT8U *)OSQPend(CommQRX2, 0, &err); //

23

ScienTiFic RESEARCH JOURNAL

waiting the message from ISR
if (err == OS_NO_ERR) {
/FUNCTION PROCESS HERE

OSQPost(GS_DATA, (void *)&data); //post the
data to EDAC task
OSTimeDIyHMSM(0, 0, 0, 100);
}else { scil(err_gs); }
/
}

GPS_Data_Process TASK will work after receiving the message
from the ISR receiver data (Rx3), the task will be suspended and delay in
each 100 millisecond. After calculating, the GPS data will be sent to the
EDAC_Process TASK to be encoded with hamming code.

static void GPS_Data_Process (void *p_arg)

{
unsigned char *msg;
char err;
while (1) {
msg = (INT8U *)OSQPend(CommQRX3, 0, &err); //
waiting the message from ISR
if (err == OS_NO _ERR) {
//FUNCTION PROCESS HERE
OSQPost(GPS_DATA, (void *)&data); //post the
data to EDAC task
OSTimeDIlyHMSM(0, 0, 0, 100);
jelse { scil(err_gs), }
/
/

EDAC_Process TASK will work after received the message from the
GS_Data_Process TASK and GPS_Data_Process TASK, before that the
task will be suspended and having delay each 10 milisecond.

static void GPS_Data_Precess (void *p_arg)
{

unsigned char *msg_gs;

unsigned char *msg_gps;

char err_gs;

char err_gps;

24

Vot. 10, No. 2, Dec 2013

while (1) {
*msg_gs = (INT8U *)OSQPend(GS_DATA, 0, &
err_gs);
if (err_gs == OS_NO_ERR) {

//FUNCTION PROCESS HERE
OSTimeDIyHMSM(0, 0, 0, 10);
}else { scil(err_gs); }

*msg_gps = (INT8U *)OSQPend(GPS_DATA, 0,

&err_gps);
if (err_gps == OS_NO_ERR) {
//IFUNCTION PROCESS HERE

OSTimeDIyHMSM(0, 0, 0, 10);
}else { scil(err_gs); }

TESTING AND RESULTS

In super loop method, it is easy to face data corruption due to the neglect of
the non re-entrancy function. As shown in Figure 3, the data becomes corrupt
because simultaneous use of the non re-entrancy function, the process is
interrupted while sending the data which has not finished transmitting yet.
We can see data that “abABCDEEF...” lower case letter sent until “z”, is
interrupted by upper case letter. We have analyzed the EDAC super loop
method [7], we need to be more careful in using non re-entrancy function
in super loop method.

25

9¢

‘PAAIASqO 2q O)
1ondwo)) ay) 0) spuas pue suado udy) pue 10112 WOPURI B S2INPOLUL BIBD
oY) Azowaw 0) JulARS 210Joq ‘AIOWAUI AY) 0) PIABS PUB W) dWES 4] I8
HAGO 24 01 PaI2jua vlep §J0) pue ejep §0 7 2IN31,] Ul UMOYS ST WeISeIp
1591 (walsAs Dy ad ay) Sutkjdde ur g 9y Jo uonerado aSeuew SOLY
URD JOA0IOJA “JOU I0 A[1091100 SUDIOM SI poyjaw apod Jurwwey Juisn
vlep §40 pue §n Suruado pue Furiols ‘uonismboe 1yaym }oayd 0} sem
159) SIY) JO wie ay], *dFeuRW 0} 1AL 9q [[IM pue uoneunsap eudordde
AU} 01 JUAS pUB PAPOIIP; PAPOIUD 2q pInoys ‘passasold 2q 0) ur sawod jey)
ejep ‘1aded suy) ul paquosap se SO Suisn UdyM dDUIJIP YL

Joug Buioed poyjay doo sadng :g ainbig

zﬁmanpmuq’ﬂ"ﬁmﬂq? G929 ZAXMANLSHOdONWT |
NnggqgwﬁmAn'smdcmuqql Wmmmbdwuanﬁm
il Hﬂ

LSHDdDNH’TNHHBdHCIJWMWﬂWTdOI;:M
- " ; L ZAXMANLSH onw'an
" o L ™ 129791
Mlsundonwwrmsdaa:!awﬁmmwbﬁouunamﬁﬁpm

ZJXMN'IJ.SHCHDNN'NPEH
943a2avzdismanisibdouupiintiapog
lS

L ZAMAN
I:!DdDNN'E'Hl‘lHSjHGSEW&MMISMDqu;apoanAmsM

L ZIHAMANLSH
OdONWTARIHDA30D wwﬂhmiapaquﬁmmtbdoumwg

SL ZAKMANLSHDdONWTA

ﬁHQaBOSEWw!mM;apoqezﬁumnmmaﬂg 1591

ZAXAAN
Lsl:lUdnNw‘mr:Hﬂdaoaawﬁlﬂpmzmusmwwﬁwmqv

¥ 3L ZAKMAN UdDN il
)|mHg_-|3c|:|ﬁvzMAn}s|bdouu.qstnqﬁ]apnqozdxmmslbdmml W

Esv gL oq
AXMEAN LSHOONWTANHO 4308w kmanys

Cizpoge
L2531 ZAXMAN LSHOSONWTIMNH
04 HQJMMISMWFPUMﬁkMM s ibdoupiyGs)

(& ZAMAN LSHDJONWINMHD43008v20

YNHNOM HOHYIS3Y OI4ILN3IDG

Vor. 10, No. 2, Dec 2013

~ GPS Receiver

|
====7 : Memory Data which was !
|| opened by OBDH (Encoding 1i
| I and Decoding Data) |
]

Figure 4: Block Schema Software Test of EDAC System

From the test applied: the RTOS can handle EDAC System calculation
and perform each task correctly. The GPS receiver and TTC data was
acquired concurrently. Even when errors were introduced, the hamming
code can correct the data which was correctly saved in the memory by
saving the data and each time getting the data from both destination and
applying the EDAC system to the data successfully as well. EDAC system
test can be found in the [7].

CONCLUSION

Using RTOS the data received concurrently can be managed and processed
safely. In RTOS behaviour can be classified the task easier whether in super
loop method, care need to be taken when using non re-entrance function to
avoid data corruption. The EDAC system to handle GS Command and GPS
data that have been implemented can detect and correct the data successfully.
A character can be divided into two hexadecimal forms to implement
Hamming Code, therefore, the data error can be corrected up to two bits.

27

ScieNTIFIC RESEARCH JOURNAL

REFERENCES

(1}

[2]

(3]

[4]

(5]

(6]

(7]

Mingsong, L.v., Guan, N., Zhang, Y., Chen, R. (2009). WCET Analysis
of the uC/OS-II Real-Time Kernel, in the Proceedings of the 2009
International Conference on Computational Science and Engineering,
Vancouver, Canada, Vol. 2, pp. 2.

Andrew E. Kalman. (1995-2010). SALVO User Manual version 4.2.2,
Pumpkin, Inc, San Francisco, USA, pp. 14-21.

McFarland, C.A., December 11, 1994, Computer Subsystem, http://
citeseerx.ist.psu.eduw/pdf, pp. 13.

Jung, Wan, J., Chang, Keun, Y., (2005). HAUSAT-2 Satellite
Radiation Environment Analysis and Software Hamming Code EDAC

Implementation, Journal of Astronomy and Space Sciences, Vol. 22,
no. 4, pp. 537-558.

Jo"ao, A.H.F. (2012). Istnanosat-1 Heart Processing and Digital
Communications Unit, Dissertation of the Master Degree in
Communication Networks Engineering, Lisboa Portugal.

M. Dipperstein, September 15,2012, Hamming (7,4) Code Discussion
and Implementation, http://michael.dipperstein.com/hamming/index.
html.

Haryono (2010). Hamming Code Implementation for Satellite On
Board Data Handling (OBDH), in the Proceedings of the 2010 VIII
International Scientific-Research Conference of Student, Bishkek, pp.
148-150.

28

