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ABSTRACT

A feed-forward multi-layer neural network with Levenberg-Marquardt 
training algorithm was developed to predict yield for supercritical carbon 
dioxide (SC-CO2) extraction of Nigella sativa essential oil. Yield of 
extraction depends on these variables: pressure, temperature, and extraction 
time hence were chosen as the input to the network. Different number of 
neurons in hidden layer were trained and tested using training and testing 
data sets. The validating data set was used to determine the network that 
having lowest mean-squared error (MSE) value and highest regression 
coefficient. The optimal ANN model, featuring four neurons in hidden layer, 
demonstrated high predictive accuracy with the lowest MSE of 0.42 ,1.43 
and 1.25 for training, validation and test model, respectively. The regression 
plots indicated high R-values of 0.99641, 0.99513, and 0.98874 for the 
training, validation, and testing sets, respectively, confirming the model's 
robustness in predicting experimental data.  A very good fitting between 
the predicted data and experimental data was observed with R2 of 0.9891 
indicates ANN shows good accuracy in predicting yield of Nigella sativa.
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INTRODUCTION

Habbatus Sauda, scientifically known as Nigella sativa, is an herbal plant 
predominantly found in the Middle East. N. sativa has been traditionally used 
as medicine for various ailments over a long period. It is highly regarded 
in the Islamic community as one of the most effective means of preventing 
illness [1]. According to a prophetic hadith, Habbatus Sauda is a treatment 
for all diseases except death [2].

The oil extracted from N. sativa seeds is extensively utilized in 
the biopharmaceutical industry due to its rich phytochemical content 
[3]. Research indicates that N. sativa seeds contain significant amounts 
of thymoquinone (T.Q.) and thymohydroquinone [4]. T.Q. is a notable 
hypoallergenic bioactive component, comprising up to 30-48% of the 
essential oil's total composition [5]. Various studies suggest that N. sativa 
exhibits antioxidant, antihypertensive, antidiarrheal, anticancer, and anti-
inflammatory properties, making it suitable for clinical applications [6]. 
Consequently, there is a high demand for Habbatus Sauda products due to 
their valuable bioactive ingredients [7]. The extraction of N. sativa seed oil 
is thus crucial in pharmaceutical manufacturing.

Traditional extraction methods for N. sativa seed oil involve the use 
of organic solvents or convection. However, these methods often result 
in residual solvents and low product yield. Supercritical fluid extraction 
(SFE) is an alternative technique that offers a safer, cleaner, and higher-
yield extraction process. This method utilizes supercritical fluids (SCFs) as 
extracting solvents [8]. A supercritical fluid is defined as a substance at a 
temperature and pressure above its critical point. In this study, a Supercritical 
Fluid Extractor model employing supercritical carbon dioxide (SC-CO2) was 
used to extract oil from N. sativa seeds. Carbon dioxide (CO2) is considered 
an excellent supercritical solvent due to its environmental friendliness 
and Generally Recognized as Safe (GRAS) status, making it suitable for 
pharmaceutical and food applications [9]. Moreover, CO2’s low critical 
temperature is advantageous for extracting bioactive compounds from 
natural matrices without significant degradation [10].
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Artificial Neural Networks (ANNs) are computational models inspired 
by the structure and function of biological neural networks. ANNs can 
predict outcomes by evaluating complex linear and non-linear relationships, 
making them superior to traditional data analysis methods in certain contexts 
[11,12]. ANNs offer significant advantages, including the ability to generalize 
from data, tolerate errors, and predict unknown test data efficiently [13]. 
The model is trained to minimize the error between actual and desired 
outputs. Once the actual output is satisfactory, the training is halted, and 
the weighted links between processing units are saved. The ANN model's 
ability to learn from historical data allows it to make accurate predictions 
even when faced with new, unseen conditions. This capability is particularly 
beneficial in optimizing extraction processes where experimental trials can 
be costly and time-consuming [14]. By simulating different scenarios, the 
ANN can identify the most efficient extraction parameters [15,16], thereby 
maximizing yield and reducing operational costs.

This study aims to apply ANN model to predict the extraction yield 
of N. sativa oil and to evaluate the optimal ANN architecture for extraction 
of N. sativa oil yield from SFE. Network performance was optimized by 
changing the number of neurons in the hidden layer, to achieve the best 
match of the training data with the experimental results. The results of the 
simulations were compared with the experimental yield data to identify 
the accuracy for the simulation of supercritical carbon dioxide extraction 
of N. sativa.

METHODOLOGY

Simulation Model

The data set comprises of experimental oil yield from an extraction 
of N. sativa oil using supercritical carbon dioxide extraction at different 
experimental conditions of pressure, temperature and time [17]. A neural 
network was used to predict the oil yield of N. sativa extracted using 
supercritical carbon dioxide extraction. MATLAB R2017b was employed 
to develop the ANN model. The parameter settings in the ANN model are 
listed in Table 1. 
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Table 1: Artificial neural network setting

Parameter Setting
Software Fitting app
Network algorithm Feed-forward back-propagation
Training algorithm Levenberg-Marquardt
Hidden layer transfer function Logistic sigmoid-tansig
Output layer transfer function Linear - purelin
Neuron in input layer 3
Neuron in output layer 1
Total data set 36
Performance function Mean Squared Error

The flowchart of the training process using the fitting app is shown in 
Figure 1. There are three input parameters to the ANN model: temperature, 
pressure, and extraction time. There is one output response, which is the 
oil yield. The ratio of training, testing and validation are 70%, 15% and 
15%, respectively.

Figure 1: Flowchart of the network training process

Table 2 shows the input parameters used in this study [17]. The 
performance of the model can be analyzed by determining the mean square 
error (MSE) as shown in Eq. (1).
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Table 2: Oil yield at each parameter of extraction [17] 

Pressure 
(bar) 

Temperature 
(°°C) 

Time 
(min) 

Experimental oil yield 
(g/g %) 

150 40 
0 0.00 

60 4.38 
90 13.14 
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where yi is experimental data, yi is predicted data and n is number of 
experiment(s). The transfer function for both hidden layer and output 
layer were set to default. The training algorithm which is Levenberg-
Marquardt was also set to default function.

Table 2: Oil yield at each parameter of extraction [17]
Pressure

(bar)
Temperature

(oC)
Time (min) Experimental oil 

yield (g/g %)

150

40 0 0.00
60 4.38
90 13.14

120 19.11
50 0 0.00

60 3.25
90 9.22

120 10.02
60 0 0.00

60 2.69
90 10.11

120 12.33

250

40 0 0.00
60 13.05
90 17.42

120 21.38
50 0 0.00

60 11.55
90 14.29

120 19.98
60 0 0.00

60 12.88
90 19.23

120 21.25
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350

40 0 0.00
60 14.25
90 15.68

120 22.33
50 0 0.00

60 11.25

90 16.49
120 17.92

60 0 0.00
60 12.56
90 18.31

120 23.20

Model Training Procedure

One input layer including extraction time, pressure, and temperature, 
one output layer with neuron representing yield, and one hidden layer 
with associated inputs and output. A neuron is a processing element that 
takes several inputs as well as their weights, sums them up, adds a bias (b) 
and uses the results as an argument for a transfer function (f). A transfer 
function is assigned to each neuron that determines the value of the outputs. 
The network is trained by modifying the weights through minimizing the 
errors. Introducing new weights is continued until the outputs meet the 
desired values.

RESULTS AND DISCUSSION  

The Network Optimization of the ANN Model

Ten configurations (one hidden layer with one until ten neurons) of the 
ANN model have been tried out to establish the optimum network for the 
best prediction performance. Table 3 lists the distribution of dataset allocated 
to training (70%), validation (15%), and testing (15%) for determining the 
optimal number of hidden neurons in the neural network. 
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Table 3: Distribution of dataset in ANN group
Group Dataset

Training 0, 4.38, 19.11, 3.25, 10.02, 0, 2.69, 10.11, 
12.33, 0, 13.05, 17.42, 21.38, 11.55, 14.29, 

19.98, 21.25, 0, 14.25, 15.68, 22.33, 0, 11.25, 
16.49,18.31 & 23.2

Validation 12.88, 19.23, 17.92, 0 & 12.56
Testing 13.14, 0, 9.22, 0, & 0

Good fitting between the experimental data and the data predicted 
from the neural network when applying the 70:15:15 ratio in predicting oil 
yield from plant parts as what reported by previous study [8,13]. As shown 
in Figure 2, the mean squared error (MSE) values for all models (training, 
validation, and test) were evaluated across different numbers of neurons in 
the hidden layer [8]. The ANN prediction was stopped at 10 neurons because 
the MSE for the test model began to increase, deviating from the objective 
of achieving an MSE close to zero [18]. After training, it was observed that 
network having one hidden layer with four neurons gave minimum errors 
with MSE values of 0.42, 1.43, and 1.25 for the training, validation, and 
test models, respectively as depicted in Figure 2.

 

Figure 2: Mean Squared Error for each model at each 
number of neurons in hidden layer.
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Performance of the Developed ANN Model 

Figure 3 illustrates the optimal ANN structure 3-4-1, which denotes 
the number of neurons in the input, hidden, and output layers, respectively. 
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sativa oil extracted using SFE. 

 

Figure 3: Optimum architecture of Artificial Neural Network for N. sativa oil yield 
prediction (4 hidden neurons)

Figure 4 shows the regression plot comparing the target values 
with the predicted values for each model. The correlation coefficients for 
training, validation, and testing are close to 1 with a regression coefficient 
(R²) of 99.5%, indicating a high degree of fit between the experimental and 
predicted oil yield given the pressure, temperature and time of extraction. 
In this study, almost all data points lie along the 45° line in the regression 
plots (Figure 4), demonstrating the compatibility of the experimental data 
with the predictions made by the ANN [19]. Figure 5 shows the data from 
experiment and data predicted from ANN. A very good fitting between 
the predicted data and experimental data was observed from the figure 
with R2 of 0.9891. The figure show that the predicting model agree with 
the experimental data. A value of R² close to 1 is crucial for selecting the 
best number of neurons in the ANN hidden layer [20]. Therefore, ANN as 
the model to predict the oil yield data from N. sativa was suitable and was 
supported and reported by several previous study [21]. 
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Conclusion 

 
ANN has successfully been used to predict the oil yield data of N. sativa with the optimized 

configuration of 3-4-1. When the number of neurons in the hidden layer was four, the regression value for 
training and testing were 0.99641 and 0.98874, respectively. The MSE values were 0.42 and 1.45 for 
training and testing, respectively. The comparison between the experimental oil yield and the predicted 
yield for each run shows the best fitting with R2 value of 0.9891 and R2 of above 0.98 for all model in the 
regression plot. In this research, the predictive model, ANN is very compatible in predicting yield from N. 
sativa oil extraction using supercritical carbon dioxide. 
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