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ABSTRACT

The main objective of this paper is to determine the curves bounding the actual
load carrying capacity in terms of the First Ply Failure and the Last Ply Failure
of composite materials used in Malaysian Industries. A mathematical model
and computational model are presented for the analysis. Higher Order Shear
Deformation plate theory is employed to predict the deformation of the plate.
The selected material properties through thickness is used and accommodated
by a discrete layer approach. A program based on finite element method is
developed using Fortran-90 to determine the lamina stresses. These stresses
are then used in the present failure model to determine the First Ply Failure
and Last Ply Failure, by progressively reducing the stiffness of the laminas.
Finally, the First Ply Failure and Last Ply failure results are analysed, in terms
of lower and upper bound within which the true load carrying capacity lies.

Introduction

In fiber reinforced laminated composite materials, failure in one direction
of any single layer implies neither total failure of that layer, nor the whole
structure. Load carrying capacity still exists not only in the structure, but
also in the layer itself. Therefore, the most common way to deal with
failure of a composite laminate is by using two definitions of failure. First
Ply Failure (FPF) occurs when initial failure of a single layer in a laminate
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fails in any mode of failure. Last Ply Failure (LPF) occurs after the
structure has degraded to the point where it is no longer capable of carrying
additional load. Therefore, the main objective of this paper is to determine
the curves bounding the actual load carrying capacity in terms of the
FPF and the LPF of composite materials used in Malaysian Industries.

Literature Review

The most common and oldest method, in terms of finite element analysis
for a laminated composite plate, is the standard laminate strength analysis.
In 1982, Lee has performed the finite element based failure analysis by
using his own direct mode determining failure criterion [1]. The major
drawback of a three-dimensional failure analysis is the tremendous amount
of memory space and calculation time required. This phenomenon leads
to the search for more efficient finite element analysis of composite plates.
Reddy and Pandey have developed a first ply failure analysis of composite
laminates based on first order shear deformation plate theory [2]. Engblom
and Ochoa develop a two-dimensional plate analysis to the above, but
with increased interpolation in the through thickness direction [3]. Their
analysis is carried out to the last ply failure. Tolson and Zabaras have
also developed two-dimensional progressive failure analysis of laminated
composite plates, but employing higher order shear deformation theory
[4]. Lee’s [1] and Hashin’s [5] failure criteria are used to determine the
mode of failure. However, both criteria neglect the interaction of the
coupling effect between the longitudinal stress and the transverse stress.
Therefore, the main objective of this research is overcome this deficiency
by developing a two-dimensional finite element computational formulation,
which could perform the progressive failure analysis of selected fiber
reinforced laminated composite plates by employing a failure criterion
with interaction terms.

High Order Shear Deformation

Higher order shear deformation theory is developed to improve both the
classical lamination theory and the first order shear deformation theory.
A higher order term is included in the assumed displacements to describe
the warping effect. According to the High-Order Shear Deformation
Lamination Theory [6], with θ gradient of displacement and ζ third order
derivative of displacement, the assumed displacements are as follows:
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These formulations are employed in the finite-element program to
determine the strains and stresses for the laminate analysis. Though the
employment of this theory has made the computational analysis to become
more complicated, the development of this theory has improved the results,
especially for thick plates.

Algorithm for Computation

 To determine the strength of a laminated plate, an incremental load analysis
procedure is employed [7]. For a given load, the stresses in the material
coordinates system for each lamina are calculated. These stresses are
then inserted into the failure model to determine if failure has occurred
within a lamina of any element. If no failure occurs, the load would be
increased to initiate the first failure. When the first ply failure occurs, the
stiffness is modified according to the mode of failure.

The plate is meshed and each element has four Gauss points. The
failure is checked for one by one layer of a Gauss point in an element. A
fiber mode failure at a Gauss point of an element would reduce the stiffness
matrix of the failed lamina within that element. Consequently the stiffness,
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by the interlaminar stresses acting between adjacent layers. An interface
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failure at a Gauss point of an element would reduce both laminas adjacent
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the algorithm described is shown in Figure 1.
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Figure 1: Flow Chart Diagram of the Procedure for the
Progressive Failure Analysis

Failure Model

Considering transversely isotropic material [9], the equation used to
determine the tensile failure in fiber mode is (with X and Y as the strength
in longitudinal and transverse direction, and subscripts T and C denote
tensile and compressive mode respectively)
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The equation [9] used to determine the tensile failure in matrix mode
is
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The equation [9] used to determine the compressive failure in fiber
mode is

 X C=σ 1 (7)

The equation [9] used to determine the compressive failure in matrix
mode is
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These failure criteria are employed in the analysis to check the
progressive failure of the fiber reinforced composite analysis. The
advantage of this set of failure criterion is that it relates the strength of
the fiber and the strength of the matrix, which ensures better predictions
of failure.

Validation of the Numerical Solution

 To validate the numerical solutions, the current finite-element formulation
is compared with three dimensional elasticity solution and other finite
element formulations. The computer program is used to determine the
stresses distribution of a 0/90/90/0 laminated composite plate subjected
to a sinusoidally distributed transverse load as equation below;

P = P
0 
(sin πx/a) (sin πy/a) (9)



46

Scientific Research Journal

The material properties used for the comparison are those of a
graphite-epoxy compound as below;

E
1
 = 25 × 106 psi G

12
= 0.5 × 106 psi

E
2
 = 1 × 106 psi G

13
= 0.5 × 106 psi

n
12

= n
13

= n
23

 = 0.25 G
23

= 0.2 × 106 psi

All plates analysed are square with planar dimension a × a, and total
thickness, h. Eight-noded element is used throughout the calculations.
The origin of the plate is located at the lower left corner of the midplane.
The plate is simply supported [7]. Sample results are presented in
Table 1.

 Table 1: Comparison of Normalised Displacements

Span to Source Central deflection,
thickness

ratio, S 







0,

2
,

2
* aa

w

4 A – Present finite-element formulation 4.411
B – Exact elasticity solution [10] 4.491

10 A – Present finite-element formulation 1.671
B – Exact elasticity solution [10] 1.709
C – FE formulation of Panda et al. [11] 1.448

20 A – Present finite-element formulation 1.178
B – Exact elasticity solution [10] 1.189
C – FE formulation of Panda et al. [11] 1.114

50 A – Present finite-element formulation 1.029
B – Exact elasticity solution [10] 1.031
C – FE formulation of Panda et al. [11] 1.016

The displacements reported are stated in their normalised form. This
is done to remove the effects of varying loads and changing aspect ratios,
S = a/h. The normalising equations are as follows:
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Table 1 obviously proves that the displacements obtained using the
finite-element solution are close to the exact solution. A detail analysis is
done for the case where the aspect ratio of the plate, S = 10 to obtain the
stresses distributions and compared with results obtained by other
researchers [7].

Failure Analysis

Uniaxial Tension

A progressive failure analysis of an angle–ply composite laminate,
subjected to uniaxial tensile loading is performed. The analysis is
performed using one eight-noded element. The uniaxial model used in
the analysis is shown in Figure 2. The plate is square and the length, a, is
20 mm (0.02 m). The laminate is made of E-glass-epoxy having an aspect
ratio (S = a/h) of 150. Therefore, the thickness of the plate, h, is 1.33333
× 10–4 m and the crossectional area (A = ah) is 2.66667 × 10–6 m2. The
laminate consists of 24 layers, where the layup studied is (θ

4
/0

4
/–θ

4
)

s
.

The material and strength properties for E-glass-epoxy are shown in
Table 2.

Figure 2: Uniaxial Tension Model
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Plate Bending

The computer program is used to investigate the first ply and last ply
failure loads of a 0/90/90/0 laminated composite plate [9]. The plate is
subjected to a sinusoidally distributed transverse load where P = P

0
(sin
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πx/a)(sin πy/a). The plate is square with the dimensions of a × a. The
thickness of the plate is h, with the aspect ratio, S = a/h. The analysis is
performed on different aspect ratios. The aspect ratio is varied from 5 to
100. The length of the plate is 40 mm. Only a quarter of the plate needs
to be modelled due to the geometric symmetry of the problem. The plate
is simply supported and the boundary conditions are shown in Figure 3.

 The material and strength properties for the E-glass/epoxy composite
used [7] are the same that is used in uniaxial tension analysis. It is as
shown in Table 2 previously. However, for this analysis, sixteen eight-
noded elements are used to insure reasonable accuracy in stress
calculations. The progressive failure analysis is performed using the
present failure model.

Results and Discussion

Uniaxial Tension

The FPF and LPF results are calculated using the finite-element program
developed. The exact FPF and LPF loads obtained for variation of fiber

Table 2: Material Properties for E-glass-epoxy

E
1

=  53.78 GPa X
T

=  1035 MPa
E

2
=  17.93 GPa X

C
=  1035 MPa

ν
12

=  0.25 Y
T

=  27.6 MPa
G

12
=  8.62 GPa Y

C
=  138 MPa

S =  41.4 MPa

u   = 0 
θx  = 0 
ξx  = 0 

v = θy = ξy = 0 

u = w = θx = ξx = 0 

v = 0 
w = 0 
θy = 
0 
ξ   

Figure 3: The Boundary Condition for Quarter of a Square Plate
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orientations are tabulated in Table 3. The table displays the angle of the
fiber orientation, the distributed load applied. The stresses are then
calculated from the load applied. The orientation of the fiber analysed
varies from 0o to 90o, with the step-size of 15o. The corresponding stresses
for each FPF and LPF load are calculated and also included in the tables
for convenience. The data in Table 3 are used to plot FPF and LPF
curves in Figure 4.

Figure 4 shows the FPF and LPF results obtained by using the present
finite-element formulation. The curves are plotted to exhibit the stresses
for fiber orientation, θ, from 0o to 90o for the E-glass-epoxy laminate.
The graphs allow us to visualise and observe the differences of the FPF
and LPF curves for the failure analysis by employing the present failure
criterion. The region between the FPF and LPF loads reflects the true
load carrying capacity for the plate. The result shows that for the fiber
orientation from 0o to 45o, the FPF loads and the LPF loads are about the
same value. The maximum variation is 13 %. Another interesting
observation to point out is that when the fiber orientation is greater than
45o, the FPF and the LPF loads differ progressively. When the fiber

Table 3: First Ply Failure and Last Ply Failure Loads
for Uniaxial Tension Analysis

Angle 0o 15o 30o 45o 60o 75o 90o

FPF Load, (N) 1500 720 330 198 144 126 122.4
LPF Load, (N) 1500 730 374 213 270 450 810
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Figure 4: FPF and LPF Curves for E-glass-epoxy Laminate
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orientation increases towards 90o, the LPF load diverges from the FPF
load value. It is in good agreement with the analysis done previously
which were compared with experimental data [9]. This is because the
present analysis employs the present criterion, which relates the interaction
of the strength between the fibers and the matrices of the laminate.
Since the force applied is pulling the plate to the x-direction, the plate is
experiencing tension in x-direction and compression in the y-direction.
The dominance of the compressive strength of the fiber increases as the
angle reaches 90o.

Plate Bending

For the failure analysis of a plate under transverse loading, the results
are shown in Table 4.

Table 4: Unnormalised FPF and LPF Loads for the Plate
under Transverse Loading

Aspect Ratio, S 5 10 20 50 100

Ply thickness, t
i
 (mm) 2 1 0.5 0.2 0.1

FPF Load (MPa) 14.6 3.90 1.01 0.23 0.054
LPF Load (MPa) 17.2 7.20 2.69 0.443 0.114

‘Unnormalised Load’ refers to the actual FPF or LPF load, P
0
. Figure

5 shows the First Ply and Last ply failure curves for the 0/90/90/0
laminated as a function of aspect ratio. The failure loads in the graph
have been normalised as

FPF* =(FPF)S2/106 (12)

and LPF* =(LPF)S2/106 (13)

 The normalised FPF loads, FPF* and LPF loads, LPF*, are calculated
and plotted against the aspect ratio and the graphs are shown in Figure 5.
This graph exhibits significantly the true load carrying capacities for the
analysed plate. The results converge for the LPF curve but the FPF
curve maintains an equal percent difference throughout. This is due to
the coupling terms in the present criterion, where the interaction of the
stresses in the longitudinal and transverse direction has improved the
boundary of the FPF and LPF of the laminate. Figure 5 also shows the
FPF and LPF of the E-glass-epoxy compared to Carbon-epoxy composite
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plates. The legend C-E FPF and C-E LPF represents the FPF and LPF
curves for composite plates made of Carbon-epoxy [9]. It is obvious that
generally, the behaviour of the plates that constitute the failure is the
same. However, the loads that fail the Carbon-epoxy plate are much
higher than the E-glass-epoxy and this is true based on the material
properties compared. The Young’s Moduli and the strengths of Carbon-
epoxy are much higher than E-glass-epoxy. Finally, we could see that the
true loads carrying capacity for Carbon-epoxy in terms of FPF and LPF
are much greater than E-glass-epoxy.

Conclusion

This paper presented the application of numerical analysis using Finite
Element Method to predict the deformation of composite materials based
on the Higher Order Shear Deformation Theory. The stresses are
calculated and checked with current failure criteria, which include the
coupling terms to predict failure. The failure is analysed in terms of the
First Ply Failure and Last Ply Failure to determine the region of the true
load carrying capacity. The results of the analysis shown in Table 4 and
5, as well as Figure 4 and 5 shows that the main objective of the research
that to perform the failure analysis of fiber reinforced composite materials
has been achieved successfully. In ensuring the reliability of the results,
before conducting the simulation, the finite-element based program has
been validated with exact solutions gained from reliable referred sources,
as well as other numerical solutions. The FPF and LPF curves have
proven that a single failure in any composite laminate does not constitute

Figure 5: The Normalized FPF and LPF Loads of E-glass-epoxy
and Carbon-epoxy
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the total failure of the laminate. Though damaged, the laminate could still
bear some extra load as long as it does not reach the LPF load. Finally,
the results also show that the present failure criterion with the existence
of coupling terms, improve the prediction of the progressive failure.
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