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ABSTRACT

Several incidents that occurred around the world involving power failure
caused by unscheduled line outages were identified as one of the main
contributors to power failure and cascading blackout in electric power
environment. With the advancement of computer technologies, artificial
intelligence (AI) has been widely accepted as one method that can be applied
to predict the occurrence of unscheduled disturbance. This paper presents
the development of automatic contingency analysis and ranking algorithm
for the application in the Artificial Neural Network (ANN). The ANN is
developed in order to predict the post-outage severity index from a set of pre-
outage data set. Data were generated using the newly developed automatic
contingency analysis and ranking (ACAR) algorithm. Tests were conducted
on the 24-bus IEEE Reliability Test Systems. Results showed that the developed
technique is feasible to be implemented practically and an agreement was
achieved in the results obtained from the tests. The developed ACAR can be
utilised for further testing and implementation in other IEEE RTS test systems
particularly in the system, which required fast computation time. On the other
hand, the developed ANN can be used for predicting the post-outage severity
index and hence system stability can be evaluated.
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Introduction

Current scenario has intensely witnessed the progressing restructuring
of electric utilities mainly driven by rapid regulatory environments and
market demands. In such situation, unpredictable events may occur if
adequate precaution procedures are not properly outlined when power
system network is subjected to disturbance. The emergence of various
analytical approaches in voltage security assessment enabled the power
system operator to analyze, perform status prediction led the power system
experiencing changes in dramatic manner in the sense of fast analysis,
status prediction and proper remedial action can be arranged as a result
of the disturbances. Disturbance caused by line outage is known to be
one of the contributing factors in power system instability problem. This
has led to various analysis concerning line outage contingencies; in the
sense of screening, selection and filtering in order to determine the possible
credible contingencies. The incidents could lead to system instability and
voltage collapse in the whole system. Most discussions in past researches
reported that computation burden faced in performing contingency analysis
can be alleviated by employing contingency selection, screening, filtering
and ranking. Since most line outages occurrences in power transmission
system are merely unpredictable, therefore prediction of post-outage
severity is needed in order to know the status of system stability condition.
Artificial Neural Network (ANN) has been widely exploited in solving
contingency problem. The work carried out by Wan et al. [1] indicated
that ANN is feasible to solve contingency problems for predicting the
occurrence of voltage collapse. The solution of ANN can also be utilised
to handle the non-linear relationship between the reactive support index
(RSI) and voltage stability margin to be used for on-line voltage stability
contingency selection [2]. ANN can be employed in its stand alone form
or combinatorial form such as cascaded and/or hybrid network as can be
seen through the work conducted by Lo et al. [3], Srivastava et al. [4]
and Singh et al. [5]. Other AI technique implemented for contingency
ranking was the fuzzy-set contingency ranking technique as reported by
Hau et al. [6]. Other type of ANN technique namely the radial basis
function network in the ANN hierarchy was also utilised for analysing
contingencies in bulk power system, which has indicated the flexibility of
AI technique [7]. In this work, non-linear mapping capabilities in radial
basis function was exploited for estimating line loading and bus voltage
as a consequence of contingency. ANN technique was employed for



13

Application of Artificial Neural Network for Automatic Contingency Analysis

dynamic security contingency screening and ranking indicating that ANN
application is very broad [8]. In this work, a large power system network
employing ANN technique in performing the contingency screening and
ranking was able to produce the energy margin calculation module.

This paper proposes a new algorithm for automatic line outage
contingency analysis and ranking technique in power security assessment.
This has speeded up the contingency analysis and ranking process since
all algorithms were conducted automatically. The algorithm was utilised
to generate the training and testing data for an ANN for the prediction of
post-outage severity index. The input patterns for the ANN were
generated from the pre-outage load flow analysis using the Newton-
Raphson load flow program cascoded with line outage indicator while
the targeted outputs are the line outage severity index obtained from the
post-outage contingency analysis noted as FVSI [9]. The proposed
technique has been tested on the IEEE 24-bus and results show that the
proposed technique is able to predict line outage severity from a set of
unseen data set within several pre-determined loading conditions.

Research Methodology

The research procedures cover the data preparation, development of the
ANN, training process and testing process. Subsequently, a post-processing
is also performed in order to assess the accuracy or the perfection of the
developed network. The procedures involved the following steps:-

i. Implementation of pre-outage load flow analysis.
ii. Development of automatic line outage contingency analysis and

ranking algorithm.
iii. Development of line outage indicator.
iv. Combination of pre-outage load flow results with the line outage

indicator.
v. Implementation of automatic line outage contingency analysis and

ranking at similar loading condition as in [i].
vi. Preparation of data for testing and training process.
vii. Development of ANN training programme.
viii. Development of ANN testing programme.
ix. Run training processes.
x. If solution is not converged, adjust ANN properties and repeat step[ix],

otherwise go to [x]
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xi. Save the developed ANN
xii. Run testing process.
xiii. Perform post-processing
xiv. If ANN is not accurate, adjust ANN properties and repeat step [ix]

onwards, otherwise go to [xv]
xv. stop

The procedures are represented in the flow chart illustrated in
Figure 1.

start

Run pre-outage
load flow program

Develop Automatic Contingency
Analysis and Ranking Algorithm

Design line outage indicator

(ACAR)

Run ACAR

Data preparation

Training data Testing data

Write ANN trainiing Write ANN testing
programme programme

Run training
process

solution 
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save the ANN

Run testing
process

ANN accurate
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properties

no

yes
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no

Figure 1: Flow Chart for the Research Development
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Development of Automatic Contingency Analysis and
Ranking

In this study, line outage contingency analysis was conducted by executing
the load flow programme while removing one line at a time. The occurrence
of the line outage is simulated by removing the respective line from the
line data prior to executing the load flow programme. The results from
the post-outage load flow were used to compute the FVSI values and the
highest value of FVSI was recorded. This process was repeated for all
lines in the system. The highest FVSI values from each line outage were
sorted in descending order to rank the severity of each line outage in
terms of voltage stability condition.

The proposed automatic line outage contingency analysis incorporated
the line outage simulation and voltage stability analysis together. In order
to identify the suitable operating loading condition for the contingency
simulation, the maximum loadability at a particular load bus is first
determined. For any line outage simulated which leads to non-convergence
of the load flow, the proposed technique will assign an FVSI value of
unity for the outage. This would indicate that voltage collapse has occurred
in the system due to the outage. The steps of the procedures are as
follows:

i. Select a load bus
ii. Set a loading condition (below Q

max
 of a load bus)

iii. Set maximum counter, λ = total line number
iv. Set a line counter (k = 1)
v. Read system data
vi. Remove line (k)
vii. Run Newton-Raphson load flow analysis
viii. Calculate FVSI values for all remaining lines, i.e.; for lines 1 to (l 1)
ix. Extract the highest FVSI for this outage. Outage number = (k)
x. Reinsert the removed line (k)
xi. Test counter, if λ≥k , repeat steps e. to j for k = k + 1.; otherwise
xii. Sort all FVSI in descending order for line outage (k) for 1 to l.

The procedures are represented in flow chart shown in Figure 2.
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Figure 2: Flow Chart for Automatic Contingency Analysis and
Ranking (ACAR)
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Line Outage Severity Index

A pre-developed line-based voltage stability index termed as FVSI was
utilised as the line outage severity indicator [9]. The mathematical
formulation for FVSI is given by:

 

iji

jij
ij XV

QZ
FVSI 2

24
= (1)

where; Z
ij
 is magnitude of the line impedance connecting the sending

bus i and the receiving bus j, X
ij
 is the line reactance, V

i
 is the voltage at

the sending bus and Q
j
 is the reactive power at the receiving bus. FVSI

value must be kept less than unity to maintain a stable system. In this
study, it was assigned as the targeted output of the ANN in both the
training and testing processes. Automatic contingency analysis was
conducted for several loading conditions in order to generate the targeted
output for the training and testing data sets.

Line Outage Indicator

Line outage indicator was introduced in order to indicate the line outage
occurrence. It was found that by introducing the line outage indicator
could speed up the convergence process of the ANN solution during the
training phase. The line outage indicator is given by a square matrix with
matrix size (n × n) where n is the number of lines in the system.

Data Composition

 The training and testing data are taken from the pre-outage data, which
are the generated active and reactive power cascoded with the line outage
indicator. The generated powers were obtained from the pre-outage ac
load flow solution. When it is coupled with the line outage indicator, the
number of patterns that can be generated for a particular loading condition
will be appeared in the following configuration:
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where:
m = no. of generator bus.
n = no. of lines.
P

g1n
= the generated real power on the swing bus obtained from

the pre-outage load flow solution.
Q

g11
, Q

g21
, ..Q

gn1,
 Q

gnm
= reactive generated power on the

generators obtained from the pre-outage
load flow solution.

Therefore, the general input pattern is given by:

P = [P
g11

 Q
g11

 Q
g21 

Q
g31

 …Q
gn1

 L
ijn

]T (3)

L
ijn

 is the line outage indicator column for nth pattern. In this study,
the IEEE 24-bus RTS was chosen as the test system, which has 11 PV
buses and 38 lines. Therefore, the number of elements in a column is 50
(i.e. 11 PV buses + 1 slack bus + 38 lines). Thus making the matrix size
for one loading condition in this system is (50 × 38). The exclusion of line
outage indicator would cause the non-convergence of the training process
since it was found that the pre-outage power data alone are not sufficient
to train the ANN. The pre-outage load flow data were obtained from
several loading conditions in order to allow wide coverage of input data.

The targeted outputs (i.e., maximum FVSI value) for the ANN were
obtained by performing the line outage automatic contingency analysis
and ranking (ACAR) at the loading conditions similar to the pre-outage
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load flow. The ACAR performed on the IEEE 24-bus RTS gives 38
maximum FVSI values correspond to the respective line on outage for
one loading condition. The matrix size for the targeted output at one
loading condition is (1 × n) and it is written in the following form:

t = [t
1
 t

2
 t

3
 t

4
 t

5
 …………t

n
] (4)

Where; n is the number of lines in the system. Thus, the first input
pattern will correspond to the first targeted output denoted by t

1
. The

number of hidden layers and the number of neurons in each hidden layer
characterize the complexity of a neural network. There are no general
rules for the selection of the number of middle layers and the number of
neurons in each layer. Thus, the choice of number of neurons in the
hidden layer is rather based on heuristic technique. The output layer has
only one neuron with FVSI as the output of the respective line outage.

The ANN input given in (4) from several loading conditions are
combined together to form the overall data sets or data patterns and
similarly to the targeted outputs. These data patterns were grouped into
two groups in order to be utilized for the training and testing processes.
Conventionally, the number of training patterns is larger than the testing
patterns in order to allow sufficient information to the ANN during the
training process. Insufficient training patterns imply less information to
the ANN, which may result in significant error during the training and
testing processes.

Training Process

Training process is implemented in a computer programme written in
MATLAB. This process involves data loading, data normalisation, network
creation, parameters initialisation, network simulation, data denormalisation
and display of results. The training process is implemented using the
algorithm given in the following step-by-step procedures:

i. Load input data into the training program.
ii. Normalise the input and targeted output data within a pre-defined

range.
iii. Create the network and specify the number of hidden layers, number

of neurons and the suitable transfer function to suit the normalised
range.

iv. Set the network parameters i.e. learning rate, momentum rate,
maximum iteration number and training goal (accuracy).
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v. Train the network.
vi. Simulate the network.
vii. Denormalise the results.
viii. If the training process converges, save the network and proceed

with the testing process. Otherwise, repeat steps [iv] to [vii].

Testing Process

Testing process allows the developed network to enumerate a set of
unseen data, which produces the output in the form of post-outage severity
indices. A fully trained network should be able to produce outputs, which
are closed to the targeted outputs. However, the developed ANN may
not necessarily perform well during the testing process. A statistical
regression analysis was implemented to the output of the testing process
in order to evaluate the accuracy of the developed network. The correlation
coefficient, R obtained from this procedure is a measure of the accuracy
of the developed ANN. Unity correlation coefficient indicates zero
absolute and rms errors. The training algorithm is represented by step-
by-step procedures as follows:

i. Load testing data into the workspace.
ii. Normalise the testing data.
iii. Retrieve the developed network into the workspace.
iv. Set the minimum and maximum targeted outputs specified in the

training process.
v. Simulate the network.
vi. Denormalise the results.
vii. Perform statistical regression analysis for network perfection

evaluation.
viii. If correlation coefficient, R is closed to 1.00; display results.

Otherwise, retrain and retest the network with adjusted network
properties.

Results and Discussion

A new algorithm to simulate the contingency analysis and ranking
automatically has been developed. With this newly developed algorithm,
the computation burden and error due to human factor have been solved.
Line outage simulation and voltage stability analysis are the two procedures
incorporated together to perform the automatic contingency analysis and
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ranking by the proposed technique. Prior to the automatic contingency
analysis and ranking, determination of maximum loadability has to be
first conducted as proposed in [8] to identify the suitable operating loading
condition margin. A constraint was considered in the algorithm by assigning
FVSI values to unity for the non-converged load flow and FVSI values
exceeding unity. Results obtained from the automatic contingency analysis
and ranking process was assigned as the targeted output of the developed
Artificial Neural Network (ANN). To establish the effectiveness of the
proposed ANN, test was conducted on the IEEE 24-bus RTS. The training
set discussed in the preceding section needed to be normalised in order
to ensure the input data laid under the acceptable range specified in the
network configuration. The achievement of the developed network can
be seen from the rms error calculated using the following mathematical
formulation

 
[ ]2

1
)()(1∑=

−=
P

i
iOiT

P
errorrms (5)

where P is the number of patterns, T(i) is the targeted output and
O(i) is the actual output of ANN for the ith pattern. Further evaluation of
the develop network can be conducted by performing post processing
using statistical technique called the regression analysis in which
comparison is made between the outputs of ANN and targeted outputs.
In achieving the ranking and classification processes using the proposed
ANN, 239 patterns were generated by performing the pre-outage ac
load flow studies with several loading conditions. The loading conditions
were randomly selected at arbitrary load buses. For training process, 155
patterns were randomly selected and the remaining 84 patterns were
utilised for the testing. The fully trained neural network consists of 2
hidden layers with [8,8,1] ‘logsig’,’logsig’,’purelin’ configuration. This
network configuration consists of eight neurons in the first and second
hidden layers, which were determined heuristically. In this study, 50 input
variables and 1 output variable were accommodated. A reliable network
was successfully developed with 0.7120 learning rate and 0.2700
momentum rate in order to achieve accuracy (goal) of 1 × 10-9. The
calculated rms error is 1.21 % and the maximum absolute error for the
entire contingency numbers is 3.91 %. The properties of the developed
network are summarised in Table 1.
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The graphical representation is illustrated in Figure 4, which shows
the neural network output and the targeted output. From the figure, it is
observed that the deviations at every line outage for both outputs are
very small. This implies that the developed ANN is reliable and able to
predict the post-outage severity index from a set of unseen pre-outage
data with high accuracy. Further evaluation on the developed network
was implemented, in which a post processing or regression analysis is
conducted in order to assess the perfection of the network. The results
are shown in Figure 5. From the figure, it is observed that the value of the
correlation coefficient, R is 0.988, which is very close to 1.00. This means
that the error is very small i.e. 0.012 or 1.2 %. It is also observed that the
targeted output points and NN output points are overlapped for most of
the points.

Table 1: The Developed Neural Network Properties (IEEE 24-bus RTS)

Network configuration [8,8,1]’logsig’,’logsig’,’purelin’

Learning rate 0.7120

Momentum rate 0.2700

Training technique Levernberg-Marquardt

Epochs (iterations) 9

Training goal 10-9

Correlation coefficient, R 0.988

Training patterns 155

Testing patterns 84

No of variables 50

Figure 4: Difference between NN output and targeted output for IEEE 24-bus
RTS during the testing process
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Conclusion

A new automatic contingency analysis and ranking algorithm based on
voltage stability condition and Artificial Neural Network (ANN) for post
outage severity prediction have been presented in this paper. It
incorporated the algorithm for automatic line removal, post-outage voltage
stability analysis and ranking technique in a common cascading
programme. The technique has successfully reduced the time taken in
the contingency analysis and ranking which may cause misranking due
to long computation time and human factor constraint. The developed
automatic contingency analysis and ranking algorithm has been tested on
the IEEE Reliability Test Systems to realise its effectiveness and has
produced a remarkable improvement in automatic contingency analysis
and ranking in terms of computation time. The findings from this study
can easily recognise the line outage severity without having to go through
a long process as implemented previously and it is viable to be implemented
on-line.

Results showed that the proposed technique has its own advantage
over the one appeared in the literature in references [6, 8, 9] which can
only classify the contingencies into secure and non-secure, while in this
method line severity can be accurately predicted ranging from 0 to 1.0.
The tests conducted on the IEEE 24-bus indicated the proposed technique
is reliable and can be used by the power system operators in Energy
Management System (EMS).

Figure 5: Post Processing Results for IEEE 24-bus RTS
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Future Work

The work in this research can be further explored towards the line outage
classification for the post-outage severity results. The essence of expert
system or fuzzy logic could be recommended to enhance the scope and
capability of the technique. Since ANN technique has known to be heuristic
in nature, therefore the application of any optimisation technique in
determining the optimal weights, ANN configuration and number of
neurons towards minimising the rms error might be an advantage to reduce
the computation time and avoidance of heuristic or uncertainty of the
technique. Evolutionary Programming based optimisation technique would
be a good choice for this purpose.
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