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ABSTRACT 

This study investigates the effectiveness of TiO2/g-C3N4/Pt composites 
prepared under different methods for photocatalytic dye degradation in 
wastewater. Initially, the TiO2/g-C3N4 composite was prepared by dry and 
wet methods at different ratios. Both methods involved mixing P25 and 
g-C3N4, followed by calcination at 550 oC for 2 h with a heating rate of         
5 oC/min in a tube furnace. To fabricate TiO2/g-C3N4/Pt, platinum (Pt) was 
deposited onto the TiO2/g-C3N4 wet composite using the photo deposition 
method. Reactive Red 4 (RR4) dyes were used as model pollutants to examine 
the photocatalytic activity of TiO2/g-C3N4/Pt.  The structural, optical, and 
photoelectrochemical properties of this prepared sample TiO2/g-C3N4/Pt 
were further investigated in detail. Characterization was performed by 
X-ray diffraction (XRD), Fourier transform attenuated total reflectance 
(FTIR-ATR), and UV-vis diffuse reflectance spectroscopy (UV-Vis DRS). 
XRD analysis showed characteristic peaks at 13.2° and 27.3° for g-C3N4. 
In FTIR, functional groups present in TiO2/g-C3N4/Pt (TC-Pt) were observed 
for NH2 and OH around 3300 cm

-1 to 3700 cm-1, C-N at 1650 cm-1, C=N at 
1200 cm-1 and triazine ring at 801 cm-1. Based on UV-Vis Analysis, TC-Pt 
shows a more absorption edge toward visible light, indicating a reduced 
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band gap from 2.80 eV to 1.6 eV. For PEC analysis, LSV, EIS, and CA 
demonstrated that TC-Pt has high current density under light, low charge 
transfer resistance under light, and high photocurrent response, respectively. 
For photocatalytic degradation, all modified samples degraded over 80% 
of RR4 dye within 1 h of light irradiation. Among the samples, TC-Pt with 
1.5% Pt loading exhibits the highest degradation reaction rate constant 
with a value of 0.0708 min-1. 

Keywords: Wet; Dry; Photodeposition; Reactive Red 4 Dye; P25

INTRODUCTION

Water pollution is referred to as the contamination of water sources by 
poisonous substances that create water unsafe for human consumption 
and harmful to marine life. One of the biggest contributors to water 
contamination is the release of dye which is widely spread due to the 
operation of numerous textile and food industries [1]. The most used 
category of dyes in the textile industry is azo dyes [2]. Previous studies 
have found that azo dye can be harmful to organisms and cause mutation 
due to the presence of aromatic amine in the structure of azo dye [3]. Based 
on previous studies, many attempts to degrade this toxic dye in wastewater 
include chemical treatment [4], ion exchange [5], membrane filtration [6], 
and adsorption [7]. However, these techniques do not fully degrade textile 
dyes, and may generate unwanted intermediates [8].

According to Jalil et al. [3], heterogeneous photocatalysis has attracted 
significant interest due to its ability to degrade and mineralize dye pollutants. 
The efficiency of the photocatalyst starts from electrons on the metal’s 
surface being excited by light irradiation moving from the valence band 
to the conduction band and forming an electron-hole pair [9]. Currently, 
titanium dioxide (TiO2) is the most used semiconductor for photocatalytic 
degradation because of its excellent long-term photostability, low cost, and 
non-toxicity [10]. However, TiO2 photocatalyst has some drawbacks such 
as a wide band gap, insufficient light absorption, and easy recombination 
of photogenerated carriers [11,12]. To address these issues, various 
modification methods have been developed to enhance the photocatalytic 
performance of TiO2 such as doping with metals and nonmetals, coupling 
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with carbon-based materials, and introducing nanocomposites [13,14].

According to Karpuraranjith et al. [15], various materials have been 
combined or coupled with TiO2 to create binary type II or Z-scheme 
heterojunctions such as molybdenum disulfide (MoS2), copper oxide (Cu2O), 
graphitic carbon nitride (g-C3N4), and silver bromide (AgBr). g-C3N4, a non-
metal semiconductor is particularly suitable for coupling with TiO2 due to its 
low band gap which allows it to absorb more visible light and thus enhance 
its photocatalytic activity [16]. However, this coupling still presents several 
limitations. These include rapid recombination of photogenerated electron-
hole pairs, low specific surface area, and limited electrical conductivity 
which can lead to inefficient charge transfer. According to several studies, 
metallic additives, especially noble metals, have proven to be more effective 
in further improving the photocatalytic properties of TiO2/g-C3N4 because of 
the synergistic effects between the metallic additives and TiO2 [17,18]. Noble 
metal such as Ag, Au and Pt offer unique advantages when used as dopants 
due to strong localized surface plasmon effect (LSPR), enhanced visible 
light absorption, reduce the band gap and improved charge separation.

To address the gap in current research, this study presents a systematic 
comparison between dry and wet synthesis methods for preparing TiO2/g-
C3N4 composites. The novelty of this work lies in identifying how different 
preparation approaches influence dispersion, interfacial contact and overall 
photocatalytic performance. Furthermore, Pt was photodeposited onto the 
optimized TiO2/g-C3N4 (from the wet method) to further enhance charge 
carrier separation and photocatalytic efficiency.

 Hence in this study, TiO2/g-C3N4  was synthesized through dry and wet 
methods. The wet method was chosen for doping TiO2/g-C3N4  with Pt, to 
enhance photocatalytic degradation of reactive red 4 (RR4) dye performance. 
This work contributes a new perspective by linking synthesis strategy with 
performance outcomes in a Pt-modified Z-scheme heterojunction system. 
The aim of this study is to compare different synthesis methods (dry and 
wet) for TiO₂/g-C₃N₄ composites, identify the optimal preparation route, 
and enhance its photocatalytic activity through Pt modification. The 
photocatalytic performance of the resulting TiO₂/g-C₃N₄/Pt composite is 
evaluated for the degradation of RR4 dye under visible light. 
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EXPERIMENTAL METHODOLOGY

Chemicals and Materials

The chemicals used in this experiment are TiO2-Degusa P25 (20% 
anatase, 80% rutile) obtained from Merck, Urea from Fluka, and RR4 dye 
(also known as Cibacron Brilliant Red) (Colour Index Number: 18105, 
λmax: 517 nm) from Sigma-Aldrich. Distilled water was used to prepare 
all solutions. Microwave reactions were undertaken using a domestic 
microwave oven (Samsung ME711 K, 800 W, 2.45 GHz). Chemicals were 
used as received and reactions were performed under air.

Characterization Methods

Preparation of g-C3N4 

The g-C3N4 was prepared by heating urea in a tube furnace. 15 g of 
urea was placed in a porcelain crucible and the sample was calcined in a 
muffle furnace for 550 oC for 2 h at a heating rate of 5 oC/min to obtain the 
g-C3N4  nanomaterials. After cooling at room temperature, the obtained 
g-C3N4  was ground using an agate mortar for further use.

Preparation of TiO2/g-C3N4 with Different Method

The TiO2/g-C3N4 (TC) composite was prepared using three different 
methods which are dry, wet, and in-situ method. The dry method involves 
mixing pre-synthesized commercially available TiO2 (P25) with g-C3N4 to 
ensure a uniform distribution of the two components. In the wet method, the 
preparation is quite similar to the dry method but the prepared g-C3N4  and 
TiO2 were physically mixed with the aid of a solvent for better interaction 
between the two materials. Meanwhile, the in-situ preparation involved 
preparing TC through the hydrothermal method using an autoclave. 

Preparation of TiO2/g-C3N4 via Dry Preparation

The first step in creating the heterojunction photocatalysts involved 
synthesizing pristine semiconductors pure of carbon nitride and titanium 
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dioxide. To prepare TC, a photocatalyst was synthesized through thermal 
heating using a muffle furnace with pre-prepared g-C3N4 and TiO2 (P25). 
First, a specific mass ratio of P25 and g-C3N4 powders was thoroughly mixed 
and ground using an agate mortar and pestle for the physical blending. Then, 
the powder mixture was transferred to a crucible with a cover and calcinated 
at 550 oC for 2 h at a heating rate of 5 oC/min.  After cooling the sample 
in the furnace, the resulting material was ground to obtain light yellow 
powder. Various mass ratios of P25 to g-C3N4 were explored, including 
30:70, 50:50, 70:30, and 90:10. Based on the amount of P25 added in the 
obtained products g-C3N4  were labelled as, TC-70:30, TC-30:70, TC-50:50, 
TC-10:90, and TC- 90:10.

Preparation of TiO2/g-C3N4 via Wet Method

In the wet preparation of TC, ethanol was used as a solvent to facilitate 
optimal interaction between TiO2 and g-C3N4 . Initially, specific mass ratios 
of TiO2 (P25) andg-C3N4  were thoroughly mixed with an agate mortar and 
pestle. Subsequently, the powder mixture was transferred to a crucible for 
the wet preparation paste. A sufficient amount of ethanol was added to the 
powder mixture in the crucible and mixed thoroughly until it formed a paste, 
ensuring an even distribution of the components. The sample was calcined 
in a tube furnace with a gradual heating rate of 5 oC/min up to 550 oC for 
2 h. The resulting TC composite characterized by its light-yellow powder 
form, was allowed to cool in the furnace. Following this method, the TC 
was prepared with various mass ratios of P25 and g-C3N4  of 30:70, 50:50, 
70:30, and 90:10, respectively which are labelled as TC-70:30, TC-30:70, 
TC-50:50, TC-10:90 and TC- 90:10.

Preparation of TiO2/g-C3N4/Pt

To fabricate the TiO2/g-C3N4/Pt (TC-Pt) catalyst, Pt (3%) was 
deposited onto the material using the photodeposition technique, utilizing 
chloroplatinic acid (H2PtCl6) as the precursor. Firstly, the distilled water, 
isopropyl alcohol (IPA), and chloroplatinic acid was placed in the Schlenk 
tube. The mixture solution was then bubbled with nitrogen gas for a few 
seconds to create degassing conditions. After that, the TC compound, 
previously prepared using the dry preparation was added to the Schlenk 
tube. Subsequently, the mixture was irradiated with a 250 W metal halide 
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lamp to simulate sunlight for 1 h while continuously stirring to obtain 
well-dispersed nanoparticles of Pt. After photodeposition, the suspension 
was isolated by washing it with distilled water several times and filtration. 
The washed residue was dried in an oven at 80 oC for 15 min. The TC-Pt 
sample was repeatedly synthesized by the same procedure but TC from 
the wet and in-situ methods was used instead of dry preparation.  After the 
photodeposition of Pt, samples named TC-Pt (0.5), TC-Pt (1), and TC-Pt 
(1.5) were obtained by varying the amount of Pt used in the preparation 
process (0.5%, 1%, and 1.5).

Photocatalytic degradation of RR4 dye

The photocatalytic performance of TiO2, g-C3N4 , TC and TC-Pt were 
examined for the degradation of RR4 dye under visible light irradiation. 
The photodegradation activity was carried out by suspending 0.03 g of 
photocatalyst in 25 mL of an aqueous 0.3 M solution of RR4 dye. The 
suspension was then poured into a glass cell of dimension 50 mm width 
× 10 depth × 80 height and irradiated with a 55 W fluorescent lamp. An 
aquarium pump model NS 7200 was used as an aeration source for oxygen 
supply. Throughout each photocatalytic experiment, the decolorization of 
RR4 was monitored at specific time intervals until either a steady state or 
complete decolorization was achieved. The absorbance was measured using 
a HACH DR 1900 spectrophotometer at 517 nm.

Photoelectrochemical Properties

Photoelectrochemical measurements, including linear sweep 
voltammetry (LSV), electrochemical impedance spectroscopy (EIS), 
chronoamperometry (CA), and Mott-Schottky (MS), were conducted using 
a CS310M Potentiostat/Galvanostat in a three-electrode setup with 0.5 M 
Na2SO4 as the electrolyte and a solar simulator (Cherusal TM-71, 50 Hz) as 
the light source. A platinum mesh and Ag/AgCl were used as the counter and 
reference electrodes, respectively. The working electrode was prepared by 
ultrasonically dispersing 10 mg of the catalyst in 200 μL of 95% ethanol, then 
spin-coated onto a 1 × 1 cm² FTO glass and dried overnight. LSV and EIS 
were performed under dark and illuminated conditions. LSV was recorded 
at 100 Hz with 0.5 mV intervals, CA with 30 s light on/off cycles, EIS in the 
10³–10⁻² Hz range at 10 mV amplitude, and MS at 10,000 Hz. EIS was used 
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to examine an impedance characteristic of material, providing information 
about charge transfer resistance and electrochemical properties, which are 
usually illustrated by a Nyquist plot. The size or radius of the semicircles 
in the Nyquist plot is directly proportional to the charge transfer resistance. 
A smaller semicircle radius suggests lower charge transfer resistance, 
resulting in improved charge separation and faster transfer of electrons. All 
measurements were conducted at room temperature.

RESULTS AND DISCUSSION

XRD Analysis

The XRD patterns of TiO2, g-C3N4 , TC 70:30 wet, TC 70:30 dry and 
TC-Pt (1.5), are presented in Figure 1 to observe the phase composition 
of the samples. The typical diffraction peaks corresponding to the anatase 
(JCPDS 21-1272) and rutile (JCPDS 21-1276) phases are observed in P25. 
The XRD spectrum of pure g-C3N4 exhibits two diffraction peaks at around 
13.2° and 27.3°, which are indexed to the (100) crystal plane of tri-s-triazine 
repeating units and the (002) crystal planes of the hexagonal phase of g-C3N4  
[19]. These peaks are in good agreement with the standard data for g-C3N4 
as referenced in the Joint Committee on Powder Diffraction Standards 
(JCPDS) card No. 87-1526 [20]. The presence of these two-characteristic 
peaks in the XRD spectrum are consistent with literature report for g-C3N4 
confirming that the synthesis sample is pure of g-C3N4.

In contrast, the XRD patterns of the TC 70:30 for wet and dry 
composites primarily show the diffraction peaks of TiO2 while no distinct 
peaks corresponding tog-C3N4  are observed. This could be attributed to the 
lower crystallinity, poor range order, or relatively low content of g-C3N4 
in the composite which often results in its signals being masked by the 
dominant TiO2 peaks particularly at the 70:30 TiO2/g-C3N4 ratio. Similar 
observations have been reported in previous studies where the g-C3N4  phase 
was undetectable in composites with low loading or poor crystallinity [21]. 

After Pt photodeposition, TC-Pt (1.5), no additional peaks 
corresponding to metallic Pt are detected which is likely due to the low Pt 
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loading and the high dispersion of small Pt nanoparticles that remain below 
the XRD detection threshold. The preservation of TiO2’s crystalline features 
and the absence of impurity peaks confirm the successful formation of the 
composite materials without altering their main phase structures. 

Figure 1: XRD spectra of TiO2, g-C3N4, TC 70:30 wet, TC 70:30 dry and TC-Pt (1.5).

FTIR Analysis

To further analyze the functional groups and chemical bonding, Fourier 
Transform Infrared Spectroscopy (FTIR) was utilized by measuring the 
absorption of infrared radiation at different wavelengths for each sample. 
Figure 2 illustrates the FTIR spectra of (a) TC prepared by the wet method, 
(b) TC prepared by the dry method, and (c) Pt-modified TC (TC-Pt). The 
FTIR spectra of the TC samples prepared by both wet and dry methods 
exhibit characteristic absorption bands corresponding to both TiO2 and 
g-C3N4  components indicating the successful synthesis of the composite 
material.

After Pt photodeposition, TC-Pt (1.5), no additional peaks corresponding to metallic Pt are 
detected which is likely due to the low Pt loading and the high dispersion of small Pt nanoparticles that 
remain below the XRD detection threshold. The preservation of TiO2’s crystalline features and the 
absence of impurity peaks confirm the successful formation of the composite materials without altering 
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Figure 1: XRD spectra of TiO2, g-C3N4, TC 70:30 wet, TC 70:30 dry and TC-Pt (1.5). 

 
FTIR Analysis 
 

To further analyze the functional groups and chemical bonding, Fourier Transform Infrared 
Spectroscopy (FTIR) was utilized by measuring the absorption of infrared radiation at different 
wavelengths for each sample. Figure 2 illustrates the FTIR spectra of (a) TC prepared by the wet 
method, (b) TC prepared by the dry method, and (c) Pt-modified TC (TC-Pt). The FTIR spectra of the 
TC samples prepared by both wet and dry methods exhibit characteristic absorption bands 
corresponding to both TiO2 and g-C3N4 components indicating the successful synthesis of the composite 
material. 

 
Figure 2 (a) and (b), shows the presence of a similar functional group for both wet and dry 

methods of TC. The identified functional groups include hydroxyl (-OH), amino (NH2), imine (C=N), 
nitrile (C-N) and triazine ring. The peak between 3300 cm-1 and 3700 cm-1 corresponds to the O-H 
stretching vibrations on the surface hydroxyl groups and NH2, while the peak between 1650 cm-1 and 
1200 cm-1 is the typical vibration of g-C3N4 component and specifically attributed to the C-N and C=N 
stretching vibration [22, 23]. 

 
The broad band between 3000 cm-1 and 3700 cm−1 is likely resulting from O-H stretching 

vibrations of from the absorbed H2O molecules. Additionally, the peaks around 810 cm-1 are related to 

15 30 45 60 75 90

In
te

ns
ity

 (a
.u

)

2θ (Degree)

TiO2

TC 70:30
Wet 

TC 70:30
Dry

TC-Pt (1.5)TC-Pt (1.5)

g-C3N4

A
 (1

01
)

R
 (1

10
)

R
 (1

01
)

A
 (1

03
)

A
 (0

04
)

A
 (1

12
)

R
 (1

11
)

A
 (0

02
)

A
 (1

05
)

A
 (2

11
)

R
 (2

20
)

A
 (2

04
)

A
 (1

16
)

A
 (2

15
)

A
 (2

24
)

(1
00

)

(0
02

)

A - Anatase
R - Rutile

- g-C3N4



159

Vol. 22, No. 2, SEPT 2025

Figure 2 (a) and (b), shows the presence of a similar functional group 
for both wet and dry methods of TC. The identified functional groups include 
hydroxyl (-OH), amino (NH2), imine (C=N), nitrile (C-N) and triazine ring. 
The peak between 3300 cm-1 and 3700 cm-1 corresponds to the O-H stretching 
vibrations on the surface hydroxyl groups and NH2, while the peak between 
1650 cm-1 and 1200 cm-1 is the typical vibration of g-C3N4  component and 
specifically attributed to the C-N and C=N stretching vibration [22, 23].

The broad band between 3000 cm-1 and 3700 cm-1 is likely resulting 
from O-H stretching vibrations of from the absorbed H2O molecules. 
Additionally, the peaks around 810 cm-1 are related to the triazine ring of 
g-C3N4  [18]. Pure TiO2 has a broad band in the 800-400 cm-1 range, is due 
to the Ti-O bond [24]. While both the wet and dry methods of TC have the 
same functional groups, there is a noticeable difference in the broadness 
of the peaks. It was observed in Figure 2 (a), that the O-H peak for the wet 
method is broader compared to the dry method in Figure 2 (b). The wet 
method shows a broader peak due to the addition of ethanol during the 
preparation of the wet sample, which results in more hydrogen bonding 
and absorption of water molecules. 

According to Figure 2 (c), no obvious peaks corresponding to Pt 
can be observed in the spectrum, due to the small and low loading of Pt 
in each sample, which falls below the detection limit of FTIR. Moreover, 
Pt cannot be identified in the FTIR range up to 800 cm-1. But Pt is most 
detected in the 500-800 cm-1 range, where its peak becomes more visible 
[25]. In summary, the FTIR analysis confirms the successful incorporation 
of TiO2 and g-C3N4 in the composites prepared by both wet and dry methods, 
with noticeable differences in the extent of hydroxyl group presence and 
hydrogen bonding. The wet method appears to facilitate better dispersion 
and interaction of functional groups due to the addition of ethanol, which 
could enhance the photocatalytic properties of the composite. According 
to Nguyen et al. [26], ethanol is a polar protic solvent with low surface 
tension that helps reduce agglomeration and promotes a more uniform 
distribution of particles primarily due to improved surface interactions 
during the calcination stages. The low detectability of Pt in the FTIR spectra 
suggest the additional characterization is necessary to fully understand its 
distribution and impact on the composite’s performance.
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Figure 2: (a) FTIR Spectra of TC for wet method, (b) FTIR Spectra of TC for dry 
method and (c) FTIR Spectra of TC-Pt. 

UV-Vis DRS
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g-C3N4 and TiO2 facilitate an expanded photo-responsive range [27-28]. 
Furthermore, the graph shows that the absorption capacity of TC-Pt (1.5) 
increases significantly in both the ultraviolet and visible light bands after 
the deposition of Pt NPs.

Figure 3: (a)Absorption edge of TC-70:30 for wet method and TC-Pt (1.5) and (b) 
Tauc plot for determinations of band gap.

The Tauc plot analysis of the UV-vis DRS data allows for the 
determination of the band gap energies of the composites. The band gap 
energy of the catalyst can be estimated from the Tauc plot using Eq. (1).

                                                                                                        (1)

Where ɑ, v, h, Eg and A represent the absorption coefficient, light 
frequency, Plank’s constant, respectively. As shown in Figure 3 (b), the band 
gaps of TC-70:30 for wet method and TC-Pt (1.5) samples were found to 
be 2.80 eV and 1.60 eV, respectively. The addition of Pt nanoparticles into 
the TC composite resulted in a significant reduction in the band gap from 
2.80 eV to 1.60 eV. This decrease indicates that Pt modification effectively 
introduces energy levels within the composite structure, facilitating 
enhanced absorption of visible light. Consequently, this modification is 
expected to improve the photocatalytic activity of the TC-Pt (1.5) composite 
by extending its light absorption range into the visible spectrum which is 
crucial for efficient solar-driven photocatalysis.
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the photocatalytic activity of the TC-Pt (1.5) composite by extending its light absorption range into the 
visible spectrum which is crucial for efficient solar-driven photocatalysis. 
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Photoelectrochemical Analysis (PEC)

In this study, the photoelectrochemical analysis of TC-70:30 for wet 
method and TC-Pt (1.5) was evaluated using Linear Sweep Voltammetry 
(LSV) under both light and dark conditionals as shown in Figure 4 (a) and 
(b). LSV is used to measure the current response of an electrochemical 
system as the applied voltage is swept linearly over time. When the 
photocatalyst is exposed to light, it produces electron-hole pairs, which 
contribute to the photocurrent, as shown by an increase in current density 
in the LSV curves. In dark conditions, no light is present to excite the 
electrons in the photocatalyst. As a result, the measured current density is 
primarily owing to the material's inherent electrochemical activity, rather 
than photocatalytic contribution.

In Figure 4 (a), TC-70:30 shows an increase in current density with 
increasing potential under light, which reflects its ability to generate 
electron-hole pairs. Under dark conditions, the current density is much 
lower, indicating that photocatalytic activity only occurs in the presence 
of light. In Figure 4 (b), the LSV curve for TC-Pt (1.5) shows a higher 
current density under light than TC-70:30, demonstrating that Pt doping 
enhances photocatalytic activity. This is because Pt has high electrical 
conductivity, which helps in the effective separation of charge carriers by 
accepting electrons from TiO₂/g-C₃N₄, leading to increased photocatalytic 
efficiency [29].

Figure 4 (c) illustrates the Nyquist Plot for TC-70:30 wet method 
and TC-Pt (1.5). As shown in Figure 4, the blue curve of the TC-70:30 
sample exhibits a larger semicircle radius than TC-Pt (1.5) (red curve), 
indicating higher resistance. Conversely, the TC-Pt (1.5) sample (red curve) 
has a smaller radius, indicating a lower charge transfer resistance. The 
presence of Pt doping in TC-Pt (1.5) increases the separation and transfer 
of photogenerated charge carriers (electrons and holes), resulting in a lower 
resistance. In contrast, Pt particles serve as electron traps, reducing the 
recombination of electron-hole pairs. As a result, according to the Nyquist 
plot, the TC-Pt (1.5) sample has better photocatalytic performance than 
the TC-70:30 sample. In Figure 4 (d) and (e), Chronoamperometry (CA) 
is a technique used in this analysis to measure the photocurrent response 
of the samples TC-70:30 wet method and TC-Pt (1.5) under constant 
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applied potential over time. Based on Figure 4 (d), the TC-70:30 of wet 
method sample shows a sharp initial decrease in photocurrent, followed 
by a sequence of smaller, more gradual peaks. This pattern illustrates that, 
while the material initially generates a considerable photocurrent due to 
electron excitation, photogenerated electron-hole pairs quickly recombine. 
This quick recombination limits overall photocurrent, indicating that the 
material's efficiency in charge separation is limited. Due to inefficient 
charge separation and high recombination rates, the TC-70:30 sample has 
a reduced photocurrent. In addition, Figure 4 (e) for the TC-Pt (1.5) sample 
shows an initial drop, but with more noticeable steps and a slightly higher 
total current than the TC-70:30 sample. The addition of Pt into TC-70:30 
significantly increased transient photocurrent in TC-70:30, contributing to 
greater optical absorption and improved efficiency in photogenerated carrier 
separation and transfer [30].

Figure 4: (a) LSV curve for TC-70:30 wet method, (b) LSV curve for TC-Pt (1.5), 
(c) Nyquist Plot for TC-70:30 wet method and TC-Pt (1.5), (d) Photocurrent 

response of TC-70:30 wet method and (e) Photocurrent response of TC-Pt (1.5).
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Photocatalytic Degradation Study

Figure 5 illustrates the photocatalytic degradation of RR4 dyes for 
each method including wet, dry, and metal doping methods. Each line in the 
graph corresponds to a different sample composition of the photocatalyst, 
including TC-70:30, TC-30;70, TC-50:50, TC-10:90, and TC-90:10. The 
wet method in Figure 5 (a) demonstrates a more effective photodegradation 
process compared to the dry method in Figure 5 (c). For the wet method, 
the sample with a 70:30 ratio exhibits the highest degradation efficiency, 
reducing the percentage of remaining dye to below 10%. In contrast, the 
dry method for the same 70:30 ratio shows decreased efficiency because it 
required a longer time to achieve less than 10% remaining dye.

Furthermore, adding Pt to the TC composite significantly enhances 
the degradation efficiency of RR4 dye, as shown in Figure 5 (e). This 
improvement is attributed to Pt’s ability to extend the light absorption range 
of TC, thereby enhancing photocatalytic efficiency under visible light. 
In addition, Figure 5 (b), (d), and (f) demonstrate that the photocatalytic 
degradation rate of all samples follows the pseudo-first order kinetics of 
the Langmuir-Hinshelwood model with R2 values above 0.97.
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Figure 5: (a) Percentage remaining of RR4 dyes after photodegradation with 
TC for wet method, (b) Linear correlation for wet method of TC, 

(c) Percentage remaining of RR4 dyes after photodegradation process with 
TC for dry method, (d) Linear correlation for dry method of TC, 

(e) Percentage remaining of RR4 with TC-Pt and (f) Linear correlation for TC-Pt.

Figure 6 (a) illustrated k-value of photodegradation RR4 dyes for wet 
and dry method of TC and (b) k-value of photocatalytic degradation of RR4 
dyes for TC-Pt. The apparent rate constant (k-value) was calculated using 
a pseudo-first-order kinetic model to provide insight into the degradation 
rate of RR4 dye. This parameter allows for a more precise comparison of 
catalytic activity by reflecting how quickly each sample facilitates dye 
degradation over time, even when final degradation efficiencies are similar. 
For every TC ratio tested, the wet method consistently results in higher k 
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values compared to the dry method as shown in Figure 6 (a). This indicates 
that the wet method is a suitable method to boost performance of coupling 
TC composites. During the wet preparation of TC, a solvent like ethanol is 
added to facilitate optimal interaction between TiO2 and g-C3N4  particles, 
leading to a homogeneous mixture that maximizes the active sites available 
for photocatalytic reactions. The solvent allowed TiO2 and g-C3N4  particles 
to come closer in contact and form heterojunction.

The highest rate constant observed is 0.0708 for the 70:30 ratio of 
TiO2 to g-C3N4 using the wet method. This suggests that this specific ratio, 
when prepared using the wet method, provides the optimal balance of 
photocatalytic components, leading to maximum efficiency in degradation 
processes. The improved performance of the wet is likely due to the 
enhanced dispersion and interaction between the TiO2 and g-C3N4  resulting 
in more efficient charge separation and transfer which are crucial for 
effective photocatalytic activity. Consequently, these findings emphasize 
the significance of the preparation method in improving the performance 
of TC composites.

Figure 6 (b) depicts the samples of TC-Pt (0.5), TC-Pt (1.0), and 
TC-Pt (1.5) which were prepared by varying the amounts of Pt (0.5%, 
1%, and 1.5%, respectively). Introducing Pt forms a Schottky barrier 
at the interface with TiO2 which helps trap electrons and prevent their 
recombination with holes. This effective charge separation leads to a higher 
generation of reactive species such as hydroxyl radicals and superoxide 
anions, which are crucial for the degradation of pollutants like RR4 dyes. 
Moreover, in the TC photocatalyst, g-C3N4 forms a heterojunction that 
further facilitates charge separation and transfer. The optimal sample, TC-Pt 
(1.5), exhibits the highest photocatalytic activity due to the balanced amount 
of g-C3N4 and the effective role of Pt in enhancing charge separation and 
reducing recombination rates. Consequently, these results underscore the 
importance of Pt doping and the synergistic effect of g-C3N4 in improving 
the photocatalytic performance of TC composites. TC-Pt (2.0) has not 
significantly increased. 
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Figure 6: (a) k-value of photodegradation RR4 dyes for TC wet and dry method, 
(b) k-value of photocatalytic degradation of RR4 dyes for TC-Pt, 

(c) percentage removal for TC wet and dry and (d) percentage removal of TC-Pt.

CONCLUSION

XRD analysis confirmed the presence of anatase and rutile phases in TiO₂ 
and pure g-C₃N₄. In the 70:30 composites, g-C₃N₄ peaks were not visible, 
likely due to low crystallinity and content. No Pt peaks appeared after 
photodeposition, indicating successful dispersion without altering the TiO₂ 
structure. Comparing synthesis methods, the wet method significantly 
enhanced the photocatalytic activity of TC compared to the dry method, 
with the 70:30 ratio showing the best performance. Subsequent Pt doping 
via photodeposition further improved the activity, where TC-Pt (1.5) 
exhibited the highest degradation efficiency. UV-Vis DRS analysis showed 
enhanced visible light absorption and a reduced band gap (from 2.80 eV 
to 1.60 eV), while PEC measurements confirmed improved conductivity 
and charge transfer in the Pt-doped sample. Overall, the optimized TC-Pt 
(1.5) composite demonstrated excellent potential for visible-light-driven 
photocatalytic applications.
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