FERN SPECIES DISTRIBUTION AND ITS PHYSIOLOGICAL PERFORMANCE AT HUTAN UiTM CAWANGAN NEGERI SEMBILAN

Authors

  • Nurhaziqa Abdull Aziz Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah Negeri Sembilan, Malaysia
  • Lili Syahani Rusli Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah Negeri Sembilan, Malaysia
  • Nor’aishah Abu Shah Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah Negeri Sembilan, Malaysia

Keywords:

Fern diversity, fern physiology

Abstract

Ferns have a long geological history earliest back millions of years, and they can be found in a variety
of environments around the world. This makes them one of the oldest groups of vascular plants on the
planet. Ferns played a significant role in shaping the Earth's flora during this ancient period, evolving
alongside other plant species and helping to form complex ecosystems. The loss of biodiversity can
impair the provision of important ecological services to humans. Hutan UiTM Cawangan Negeri
Sembilan has a humid climate and a high potential for pteridophyte growth. There is a lack of knowledge
regarding fern diversity, and this study will provide more information about fern diversity. The purpose
of this research is to study the distribution of fern species and their physiological performance at Hutan
UiTM Cawangan Negeri Sembilan. The study revealed 8 families of ferns that represent 8 genera and
9 species, which include Lygodiaceae, Gleicheniaceae, Pteridaceae, Thelypteridaceae, Selaginellaceae,
Osmundaceae, Lycopodiaceae and Polypodiceae. The highest species that was found is Selaginella
willdenowii which has 51 individuals and the lowest species that were found is Lycopodiella cernua
which has only 3 individuals. The Shannon-Wiener Index was H’=1.95 and the Pielou Evenness Index
was J’=0.89. Our findings indicate that relative chlorophyll content is an important measure for
characterizing plant nitrogen nutritional status. The highest average of relative chlorophyll content
recorded is 52.07±2.18a which is Osmunda vachellii and the lowest is 10.63±2.89f which is
Dicranopteris linearis. Overall, the findings suggest that ferns have high biological significance
because they have a primitive life cycle with two discrete and more or less independent generations.
This study will benefit ecosystems where ferns exist by providing shelter, shade, erosion protection,
chemical absorption and microhabitats that benefit other species.

References

Akinsoji, A., Agboola, O. O., Adeonipekun, P. A., & Oyebanji, O. O. O., Adeniyi, T. A., & Ajibode, M. O. (2016).

Occurrence and distribution of Pteridophytes in parts of Lagos and Osun States. Ife Journal of Science, 18(2),

-453. https://doi.org/10.4314/ijs.v18i1

Aros-Mualin, D., Noben, S., Karger, D. N., Carvajal-Hernández, C. I., Salazar, L., Hernández-Rojas, A., Kluge,

J., Sundue, M. A., Lehnert, M., Quandt, D., & Kessler, M. (2021). Functional diversity in ferns is driven by species

richness rather than by environmental constraints. Frontiers in Plant Science, 11, 615723.

https://doi.org/10.3389/fpls.2020.615723

Bobbitt,

Z.

(2021).

One-Way ANOVA: Definition, Formula, and example. Statology.

https://www.statology.org/one-way-anova/. [Access online 15 October 2024].

Bradley, K.A. (2022). Lygodium japonicum (Japanese climbing fern). CABI Compendium, 11, 90-91.

https://doi.org/10.1079/cabicompendium.31783.

Christenhusz, M.J.M. and Chase, M.W. (2014). Trends and concepts in fern classification. Annals of Botany,

(4), 571–594. https://doi:https://doi.org/10.1093/aob/mct299.

Dagnino-Leone, J., Pinto Figueroa, C., Latorre Castañeda, M., Donoso Youlton, A., Vallejos-Almirall, A., Agurto

Muñoz, A., Pavón Pérez, J., & Agurto-Muñoz, C. (2022). Phycobiliproteins: structural aspects, functional

characteristics, and biotechnological perspectives. Computational and Structural Biotechnology Journal, 20,

-1527. https://doi.org/10.1016/j.csbj.2022.02.016

Dai, X., Chen, C., Li, Z., & Wang, X. (2020). Taxonomic, phylogenetic, and functional diversity of ferns at three

differently disturbed sites in longnan county, China. Diversity, 12(4), 135. https://doi.org/10.3390/d12040135

Fang, T., Motte, H., Parizot, B. and Beeckman, T. (2021). Early ‘rootprints’ of plant terrestrialization: selaginella

root development sheds light on root evolution in vascular plants. Frontiers in Plant Science, 12 (735514).

https://doi.org/10.3389/fpls.2021.735514

Goyal, R. K., & Habtewold, J. Z. (2023). Evaluation of legume–rhizobial symbiotic interactions beyond nitrogen

fixation that help the host survival and diversification in hostile environments. Microorganisms, 11(6), 1454.

https://doi.org/10.3390/microorganisms11061454

Grimm, G. W., Kapli, P., Bomfleur, B., McLoughlin, S., & Renner, S. S. (2014). Using more than the oldest fossils:

dating osmundaceae with three bayesian clock approaches. Systematic Biology, 64(3), 396–405.

https://doi.org/10.1093/sysbio/syu108

Huang, H., Wang, W., Lv, J., Liu, Q., Liu, X., Xie, S., Wang, F., & Feng, J. (2022). Relationship between

chlorophyll and environmental factors in lakes based on the random forest algorithm. Water, 14(19), 3128.

https://doi.org/10.3390/w14193128

Jost,

L. (2010). The relation between evenness and diversity. Diversity, 2(2), 207–232.

https://doi.org/10.3390/d2020207

Kagaruki, T. (2021). Species diversity: definition, importance, examples, threats, conservation.

https://byjus.com/neet/why-is-species-diversity-important/. [Access online 25 November 2022].

Kasim, N., Sawut, R., Abliz, A., Qingdong, S., Maihmuti, B., Yalkun, A., & Kahaer, Y. (2018). Estimation of the

relative chlorophyll content in spring wheat based on an optimized spectral index. Photogrammetric Engineering

& Remote Sensing, 84(12), 801–811. https://doi.org/10.14358/pers.84.12.801

in

fruits

Khoo, H.-E., Prasad, K. N., Kong, K.-W., Jiang, Y., & Ismail, A. (2011). Carotenoids and their isomers: color

pigments

and

vegetables. Molecules

https://doi.org/10.3390/molecules16021710

(Basel,

Switzerland), 16(2),

–1738.

Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: a comprehensive review of their chemical

properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809.

https://doi.org/10.3390/molecules25173809

Miyoshi, S., Kimura, S., Ryo Ootsuki, Higaki, T. and Nakamasu, A. (2019). Developmental analyses of

divarications in leaves of an aquatic fern Microsorum pteropus and its varieties. PubMed Central, 14(1), 4–14.

https://doi.org/10.1371/journal.pone.0210141.

Mus, F., Crook, M. B., Garcia, K., Garcia Costas, A., Geddes, B. A., Kouri, E. D., Paramasivan, P., Ryu, M.-H.,

Oldroyd, G. E. D., Poole, P. S., Udvardi, M. K., Voigt, C. A., Ané, J.-M., & Peters, J. W. (2016). Symbiotic nitrogen

fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology, 82(13),

–3710. https://doi.org/10.1128/aem.01055-16

Nazihah, I., Shahir Zaini, M., Shahari, R., l Aini Che Amri, C. N., & Tajuddin, N. M. (2018). Diversity and

distribution of fern species in selected trail in Kuantan Pahang. Science Heritage Journal, 2(1), 04–09.

https://doi.org/10.26480/gws.01.2018.04.09

Nolan, K., & Callahan, J. (2006). Beachcomber biology: The shannon-weiner species diversity index.

https://www.ableweb.org/biologylabs/wp-content/uploads/volumes/vol-27/22_Nolan.pdf. [Access online 28

April 2023]

Ollgaard, B. (1975). Studies in lycopodiaceae, observations on the structure of the sporangium wall. American

Fern Journal, 65(1), 19–27. https://doi.org/10.2307/1546590.

Pietrak, A., Piotr Salachna, & Łukasz Łopusiewicz. (2022). Changes in growth, ionic status, metabolites content

and antioxidant activity of two ferns exposed to shade, full Sunlight, and salinity. National Library of Medicine,

(1), 296–296. https://doi.org/10.3390/ijms24010296

Sciandrello, S., Cambria, S., del Galdo, G.G., Tavilla, G. and Minissale, P. (2021). Unexpected discovery of

Thelypteris palustris (thelypteridaceae) in Sicily (Italy): morphological, ecological analysis and habitat

characterization. Plants, 10(11), 2–17. https://doi.org/10.3390/plants10112448.

Sharpe, J.M., Mehltreter, K. and Walker, L.R. (2010). Ecological importance of ferns.

https://www.cambridge.org/core/books/abs/fern-ecology/ecological-importance-of

ferns/77E7EA308D41D0667117D935721A5EA2. [Access online 13 April 2023].

Su, S., Zhou, Y., Qin, J. G., Yao, W., & Ma, Z. (2010). Optimization of the method for chlorophyll extraction in

aquatic plants. Journal of Freshwater Ecology, 25(4), 531–538. https://doi.org/10.1080/02705060.2010.9664402

Swapnil, P., Meena, M., Singh, S. K., Dhuldhaj, U. P., Harish, & Marwal, A. (2021). Vital roles of carotenoids in

plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional

aspects. Current Plant Biology, 26, 100203. https://doi.org/10.1016/j.cpb.2021.10020

understorey

Thomas, K.R., Kolle, M., Whitney, H.M., Glover, B.J. and Steiner, U. (2010). Function of blue iridescence in

tropical

plants.

Journal

https://doi.org/10.1098/rsif.2010.0201.

of

The

Royal

Society

Interface,

(53),

–1707.

Trinh, K. (2018). Osmunda vachellii | ferns and lycophytes of the world. Ferns and Lycophytes of the World.

https://www.fernsoftheworld.com/2019/05/22/osmunda-vachellii/. [Access online 22 March 2023].

Vaganov, A.V. (2021). Phylogenetic comparative morphological analysis of fern spores in subfamily pteridoideae

(pteridaceae,

Microscopy

https://doi.org/10.1002/jemt.23921.

Research

and

Technique,

(2),

–498.

Verberk, W. (2011). Explaining general patterns in species abundance and distributions | learn science at scitable.

Nature.com.

https://www.nature.com/scitable/knowledge/library/explaining-general-patterns-in-species

abundance-and-23162842/ [Access online 7 April 2023].

based

on

Wu, Q., Zhang, Y., Zhao, Z., Xie, M. and Hou, D. (2023). Estimation of relative chlorophyll content in spring

wheat

multi-temporal

https://doi.org/10.3390/agronomy13010211.

uav

remote

sensing.

Agronomy,

(1),

–211.

Xu, Z., & Deng, M. (2017). Identification and Control of Common Weeds: Volume 2. Dordrecht: Springer

Netherlands. pp. 3-102. https://doi.org/10.1007/978-94-024-1157-7

Yang, F., Sarathchandra, C., Chen, K., Huang, H., Gou, J.-Y., Li, Y., Mao, X.-Y., Wen, H., Zhao, J., Yang, M.-F.,

Suthathong Homya, & Kritana Prueksakorn. (2021a). How fern and fern allies respond to heterogeneous habitat

— a case in Yuanjiang dry-hot valley. PubMed Central, 14(1), 248–260.

https://doi.org/10.1080/19420889.2021.2007591

Yang, L., Huang, Y., Lima, L.V., Sun, Z., Liu, M., Wang, J., Liu, N. and Ren, H. (2021b). Rethinking the ecosystem

functions of dicranopteris, a widespread genus of ferns. Frontiers in Plant Science, 11, 2–10.

https://doi.org/10.3389/fpls.2020.581513.

Yusuf, F. B., Tan, B. C., & Turner, I. M. (2003). What is the minimum area needed to estimate the biodiversity of

pteridophytes in natural and man-made lowland forests in Malaysia and Singapore?. ScholarBank@NUS

Repository, 17 (1), 1-9. https://scholarbank.nus.edu.sg/handle/10635/102161

eastern

Zhang, H., John, R., Peng, Z., Yuan, J., Chu, C., Du, G., & Zhou, S. (2012). The relationship between species

richness and evenness in plant communities along a successional gradient: A study from sub-alpine meadows of

the

qinghai-tibetan

https://doi.org/10.1371/journal.pone.0049024

linked

plateau,

China. PloS

ONE, 7(11),

e49024.

Zhang, S.-B., Sun, M., Cao, K.-F., Hu, H., & Zhang, J.-L. (2014). Leaf photosynthetic rate of tropical ferns is

evolutionarily

to

water transport

capacity.

PLoS

ONE,

(1),

e84682. https://doi.org/10.1371/journal.pone.0084682

Downloads

Published

2024-10-31