THE ABUNDANCE OF FRUIT BATS IN UITM KUALA PILAH AND ITS MORPHOMETRIC ANALYSIS

Authors

  • Muhammad Fakhrudin Mohd Nokin School of Biological Sciences, Faculty of Applied Sciences
  • Nur Hasyimah Ramli School of Biological Sciences, Faculty of Applied Sciences

Keywords:

Composition, regression, growth, C. brachyotis, M. minimus

Abstract

There are currently few records of anthropogenic effects on bat composition, particularly in Malaysia.
The objectives of this study are to determine the abundance and growth rate of bats at UiTM Negeri
Sembilan Kampus Kuala Pilah (UiTMCNS). Mist nets with 2.5 x 9 x 4cm in size were set up at five
checkpoints for sample collection, followed by species identification and morphological measurement
of each sample. A total of 13 individuals of Cynopterus brachyotis and 9 individuals of Macroglossus
minimus were collected from 4 checkpoints (checkpoint 1, 2, 3 and 5), with non-individual of bat was
collected from checkpoint 4. The number of C. brachyotis and M. minimus were recorded at checkpoint;
1 (6, 4) individual, 2 (3, 2) individuals, 3 (3, 1) individuals and 5 (1, 2) individuals, respectively. Both
C. brachyotis and M. minimus are classified as fruit bats. The Length-Weight Regressions (LWRs) of
both species caught shows positive allometric growth as the ‘b’ value is more than 3. The parabolic
form of LWRs for this study is W=24.384L4.853. The result of LWRs analysis prove that the study area
is still suitable to become the fruit bat’s habitat. This research will help to increase data on bats
composition in Negeri Sembilan, especially UiTMCNS. The data also can be used as a guideline for
future researchers and important for conservation planning of the species in Negeri Sembilan.

References

Adaka, G., Ndukwe, E., & Nlewadim, A. (2015). Length-weight relationship of some fish species in a tropical

rainforest river in southeast Nigeria, Transylvanian Review of Systematical and Ecological Research, 17.2, 73

https://doi.org/10.1515/trser-2015-0065

Afelt, A., Lacroix, A., Zawadzka-Pawlewska, U., Pokojski, W., Buchy, P., & Frutos, R. (2018). Distribution of

bat-borne viruses and environment patterns. Infection, Genetics and Evolution, 58, 181–191.

https://doi.org/10.1016/j.meegid.2017.12.009

Ahmad Ruzman, N. H. (2016). Cynopterus brachyotis. https://mybis.gov.my/art/162 . [Access online 15

November 2016]

regulation,

Albernaz, E. S. S., Santiago, C. S., Guerra, L. H. A., Santos, F. C. A., Góes, R. M., Morielle‐Versute, E., Taboga,

S. R., Souza, C. C., & Beguelini, M. R. (2021). The prostate of the bat Artibeus lituratus: Seasonal variations,

abiotic

and

hormonal

https://doi.org/10.1002/jmor.21362

control.

Journal

of

Morphology,

(8),

–1207.

Alpízar, P., Schneider, J., & Tschapka, M. (2020). Bats and bananas: Simplified diet of the nectar-feeding bat

Glossophaga soricina (Phyllostomidae: Glossophaginae) foraging in Costa Rican banana plantations. Global

Ecology and Conservation, 24, e01254. https://doi.org/10.1016/j.gecco.2020.e01254

Ashraf, M., & Habjoka, N. (2013). Tropical mangroves; biologically most diverse ‘the global 200’ ecosystem:

Megachiroptera as key ecological and conservation tool’. MAP Newsletter, 315.

Atama, C. I., Okeke, O. C., Ekeh, F. N., Ezenwaji, N. E., Onah, I. E., Ivoke, N., & Eyo, J. E. (2013). Length

weight relationship and condition factor of six cichlid (cichilidae, perciformes) species of Anambra River, Nigeria.

Journal of Fisheries and Aquaculture, 4(2), 82-86.

Bakar, M. A. A. A., & Faudzi, M. F. (2019). The preliminary study composition of bat species in University of

Technology Mara (UiTM) Kuala Pilah, Negeri Sembilan, Malaysia. Gading Journal of Science and Technology,

(02), 73–78.

Beilke, E. A., Blakey, R. V., & O’Keefe, J. M. (2021). Bats partition activity in space and time in a large,

heterogeneous landscape. Ecology and Evolution. 11(11), 6513-6526. https://doi.org/10.1002/ece3.7504

Berge, E. (2020). Assessing the relationships between pollinator-friendly plantings and birds, bats and white

tailed deer on farms in the Coastal Plain of Virginia and Maryland [Master thesis, Virginia Polytechnic Institute

and State University]. Virginia Tech Data Repository. http://hdl.handle.net/10919/100984.

Bize, P., Metcalfe, N. B., & Roulin, A. (2006). Catch-up growth strategies differ between body structures:

Interactions between age and structure-specific growth in wild nestling alpine swifts. Functional Ecology, 20(5),

–864. https://www.jstor.org/stable/3806594

Bradford, A. (2018). Bats: Fuzzy Flying Mammals. https://www.livescience.com/28272-bats.html [Access online

October 2018].

Burke, K., Waldron, C., Mentor, I., & Low, E. (2021). Habitat preferences and acoustic behaviours of bats in the

Beaverhill Natural Area in 2021. http://beaverhillbirds.com/media/2215/2021-acoustics-research-report-final

formatted.pdf [Access online 13 July 2021].

Camargo, P. H. S. A., Pizo, M. A., Brancalion, P. H. S., & Carlo, T. A. (2020). Fruit traits of pioneer trees structure

seed dispersal across distances on tropical deforested landscapes: Implications for restoration. Journal of Applied

Ecology, 57(12), 2329–2339. https://doi.org/10.1111/1365-2664.13697

Castillo-Figueroa, D. (2022). Does Bergmann’s rule apply in bats? Evidence from two neotropical species.

Neotropical Biodiversity, 8(1), 200-221. https://doi.org/10.1080/23766808.2022.2075530

Cheney, J. A., Ton, D., Konow, N., Riskin, D. K., Breuer, K. S., & Swartz, S. M. (2014). Hindlimb motion during

steady flight of the Lesser Dog-Faced Fruit Bat, Cynopterus brachyotis. PLoS ONE, 9(5), e98093.

https://doi.org/10.1371/journal.pone.0098093

Claireau, F., Kerbiriou, C., Charton, F., de Almeida Braga, C., Ferraille, T., Julien, J. F., Machon, N., Allegrini,

B., Puechmaille, S. J., & Bas, Y. (2021). Bat overpasses help bats to cross roads safely by increasing their flight

height. Acta Chiropterologica, 23(1), 189–198. https://doi.org/10.3161/15081109ACC2021.23.1.015

Community, N. P. E. (2021). The epigenetics of aging in bats. Nature Portfolio Ecology & Evolution Community.

https://natureecoevocommunity.nature.com/posts/the-epigenetics-of-aging-in-bats [Access online 9 March 2021]

Crane, M., Silva, I., Grainger, M. J., & Gale, G. A. (2020). On a wing and a prayer: limitations and gaps in global

bat wing morphology trait data. On a wing and a prayer: Limitations and gaps in global bat wing morphology trait

data. Mammal Review, 1-31. https://doi.org/10.1101/2020.12.07.414276

Cunto, G. C., & Bernard, E. (2012). Neotropical Bats as Indicators of Environmental Disturbance: What is the

emerging message?. Acta Chiropterologica, 14(1), 143–151. https://doi.org/10.3161/150811012x654358

Daly, A., Baetens, J., & De Baets, B. (2018). Ecological diversity: Measuring the unmeasurable. Mathematics,

(7), 119. https://doi.org/10.3390/math6070119

Dharmayanti, N. L. P. I., Nurjanah, D., Nuradji, H., Maryanto, I., Exploitasia, I., & Indriani, R. (2021). Molecular

detection of bat coronaviruses in three bat species in Indonesia. Journal of Veterinary Science, 22(6): e70.

https://doi.org/10.4142/jvs.2021.22.e70

Elangovan, V., Yuvana Satya Priya, E., Raghuram, H., & Marimuthu, G. (2007). Wing morphology and flight

development in the short-nosed fruit bat Cynopterus sphinx. Zoology, 110(3), 189–196.

https://doi.org/10.1016/j.zool.2007.02.001

Elias,

N.

A.

(2021).

Habitalk:

the

bats

of

Penang -

our

heroes.

https://habitatfoundation.org.my/2021/02/09/habitalk-the-bats-of-penang-our-invisible-heroes/ [Access online 22

January 2022].

invisible

Estrada, V. S., Meyer, C. F. J., & Kalko, E. K. V. (2010). Effects of forest fragmentation on aerial insectivorous

bats in a land-bridge island system. Biological Conservation, 143(3), 597-608. 10.1016/j.biocon.2009.11.009

Ferreira, D. F., Jarrett, C., Atagana, P. J., Powell, L. L., & Rebelo, H. (2021). Are bat mist nets ideal for capturing

bats? from ultrathin to bird nets, a field test. Journal of Mammalogy, 102(6), 1627–1634.

https://doi.org/10.1093/jmammal/gyab109

Fontaine, A., Simard, A., Dutel, J., Dubois, B., & Elliott, K. (2021). Using mounting, orientation, and design to

improve bat box thermodynamics in a northern temperate environment. Scientific Reports, 11, 7728.

https://doi.org/10.1038/s41598-021-87327-3

Francis, C. M., Borisenko, A. V., Ivanova, N. V., Eger, J. L., Lim, B. K., Guillén-Servent, A, Kruskop, S. V.,

Mackie, I., & Hebert, P. D. N. (2010). The role of DNA barcodes in understanding and conservation of mammal

diversity in Southeast Asia. PloS one, 5(9), e12575. https://doi.org/10.1371/journal.pone.0012575

Francis, C. M. (2008). A field-guide to the mammals of South-East Asia. New Holland, London, UK., 392 pp.

Frick, W. F., Kingston, T., & Flanders, J. (2020). A review of the major threats and challenges to global bat

conservation. Annals of the New York Academy of Sciences, 1469, 5–25. https://doi.org/10.1111/nyas.14045

Froese, R. (2006). Cube law, condition factor and weight-length relationships: history, meta-analysis and

recommendations. Journal of Applied Ichthyology, 22, 241-253.

Gannon, W. L., O’Farrell, M. J., Corben, C., & Bedrick, E. J. (2004). Call character lexicon and analysis of field

recorded bat echolocation calls. Echolocation in Bats and Dolphins (eds J.A. Thomas, C.F. Moss & M. Vater),

pp. 478–486. University of Chicago Press, Chicago, IL.

García-Morales, R., Badano, E. I., & Moreno, C. E. (2013). Response of neotropical bat assemblages to human

land use. Conservation Biology, 27(5), 1096–1106. https://10.1111/cobi.12099.

Gardiner, J. D., Codd, J. R., & Nudds, R. L. (2011). An association between ear and tail morphologies of bats and

their foraging style. Canadian Journal of Zoology, 89, 90-99

Giacomini, G., Herrel, A., Chaverri, G., Brown, R. P., Russo, D., Scaravelli, D., & Meloro, C. (2021). Functional

correlates of skull shape in Chiroptera: feeding and echolocation adaptations. Integrative Zoology. 17, 430–442.

https://doi.org/10.1111/1749-4877.12564

Gomes, G. A., Reid, F., & Tuttle, M. D. (2015). Bats of Trinidad and Tobago: A Field Guide and Natural History.

Trinibats. https://www.nhbs.com/bats-of-trinidad-and-tobago-book

Costa

Haave-Audet, E., Audet, D., Monge-Velazquez, M., Flatt, E., & Whitworth, A. (2021). Unexpected diversity in

regenerating sites stresses the importance of baselines: a case study with bats (Order Chiroptera) on the Osa

Peninsula,

Rica.

Tropical

https://doi.org/10.1177/19400829211028118

Conservation

Science,

,

Håkansson, J., Jakobsen, L., Hedenström, A., & Johansson, L. C. (2017). Body lift, drag and power are relatively

higher in large-eared than in smalleared bat species. Journal of the Royal Society Interface, 14, 20170455.

http://doi.org/10.1098/rsif.2017.0455

Hector, K. L., & Nakagawa, S. (2012). Quantitative analysis of compensatory and catch-up growth in diverse

taxa. Journal of Animal Ecology, 81(3), 583–593. https://doi.org/10.1111/j.1365-2656.2011.01942.x

Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54, 427–431.

https://doi.org/10.2307/1934352

Hilborn, E., & Walters, C. J. (2001). Quantitative fisheries stock assessment: choice, dynamics and uncertainty,

New York, Chapman and Hall, pp. 570.

Holbech, L. H. (2020). The elevated mist‐net frame: A robust and versatile manoeuvrable design for capturing

upper strata birds. Methods in Ecology and Evolution, 11(9), 1086–1091. https://doi.org/10.1111/2041

x.13425

Hornok, S., Meyer-Kayser, E., Kontschán, J., Takács, N., Plantard, O., Cullen, S., Gaughran, A., Szekeres, S.,

Majoros, G., Beck, R., Boldogh, S. A., Horváth, G., Kutasi, C., & Sándor, A. D. (2021). Morphology of

Pholeoixodes species associated with carnivores in the western Palearctic: Pictorial key based on molecularly

identified Ixodes (Ph.) canisuga, I. (Ph.) hexagonus and I. (Ph.) kaiseri males, nymphs and larvae. Ticks and Tick

Borne Diseases, 12(4), 101715. https://doi.org/10.1016/j.ttbdis.2021.101715

Isa, M. M., Rawi, C. S., Rosla, R., Anuar, S., & Shah, M. (2010). Length-weight relationships of freshwater fish

species in Kerian River basin and Pedu Lake. Research Journal of Fisheries and Hydrobiology, 5(1), 1-8.

Jaramillo, J. M. (2022). Jamaican bats can smell food and drive themselves bananas. Journal of Experimental

Biology, 225(3), JEB243479. https://doi.org/10.1242/jeb.243479

Kasso, M., & Balakrishnan, M. (2013). Ecological and economic importance of bats (Order Chiroptera). ISRN

Biodiversity, 2013(187415), 1–9. https://doi.org/10.1155/2013/187415

Khajeh, A., Mohammadi, Z., Ghorbani, F., & Jahantigh, H. (2021). Molecular and morphometric characterization

of fruit bats of the genus Rousettus Gray, 1821 (Chiroptera: Pteropodidae) in Iran. Zoology in the Middle East,

(1), 1-11. https://doi.org/10.1080/09397140.2020.1859977

Kiernan,

D.

(2021).

1:

Introduction,

Simpson’s

Index

and

Shannon-Weiner

Index.

https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Natural_Resources_Biometrics_(Kiernan)

/10%3A_Quantitative_Measures_of_Diversity_Site_Similarity_and_Habitat_Suitability/10.01%3A_Introductio

n__Simpsons_Index_and_Shannon-Weiner_Index [Access online 26 July 2021]

Kingston, T., Francis, C., Akbar, Z., & Kunz, T. (2003). Species richness in an insectivorous bat assemblage from

Malaysia. Journal of Tropical Ecology, 19(1), 67-79. https://doi.org/10.1017/S0266467403003080

Kofron, C. P. (2007). Reproduction of the long-tongued nectar bat Macroglossus minimus (Pteropodidae) in

Brunei, Borneo. Acta Zoologica, 89(1), 53–58. https://doi.org/10.1111/j.1463-6395.2007.00291.x

Kurta, A., Foster, R. W., Daly, B. A., Wilson, A. K., Slider, R. M., Rockey, C. D., Rockey, J. M., Long, B. L.,

Auteri, G. G., Collins, J. D., White, J. P., Kaarakka, H. M., Redell, J. A., & Reeder, D. M. (2020). Exceptional

longevity in little brown bats still occurs, despite presence of white-nose syndrome. Journal of Fish and Wildlife

Management, 11(2), 583–587. https://doi.org/10.3996/JFWM-20-039

implications

for

Lane, D. J. W., Kingston, T., & Lee, B. P. Y-H. (2006). Dramatic decline in bat species richness in Singapore,

with

Southeast

https://doi.org/10.1016/j.biocon.2006.03.005

Asia.

Biological

Conservation,

(4),

–593.

Larsen, R. J. (2007). Mist net interaction, sampling effort, and species of bats captured on Montserrat, British

West Indies. Graduate theses. South Dakota State University.

Laurindo, R. D. S., Gregorin, R., & Tavares, D. C. (2017). Effects of biotic and abiotic factors on the temporal

dynamic of bat-fruit interactions. Acta Oecologica, 83, 38–47. https://doi.org/10.1016/j.actao.2017.06.009

Lavery, T. H., Leary, T. N., Shaw, C., Tahi, M., Posala, C., & Pierce, R. (2021). Ecology and conservation of bats

in Temotu Province, Solomon Islands and Torba Province, Vanuatu. Pacific Conservation Biology, 27(1), 27.

https://doi.org/10.1071/pc20035

Law, B. S., & Blakey, R. V. (2021). Bats in temperate forests: where are the trends in bat populations?. In 50

Years of bat research Springer, Cham. pp. 93-104.

Lei, M., & Dong, D. (2016). Phylogenomic analyses of bat subordinal relationships based on transcriptome data.

Scientific Reports, 6(27726), 1-8. https://doi.org/10.1038/srep27726

MacInnis, G., & Forrest, J. R. K. (2019). Pollination by wild bees yields large strawberries than pollination by

honey bees. Journal of Applied Ecology, 56(4), 824-832. https://doi.org/10.1111/1365-2664.13344

Marinello, M. M., & Bernard, E. (2014). Wing morphology of Neotropical bats: a quantitative and qualitative

analysis with implications for habitat use. Canadian Journal of Zoology, 92(2), 141–147.

https://doi.org/10.1139/cjz-2013-0127

Martins, A. C. M., Willig, M. R., Presley, S. J., & Marinho-Filho, J. (2017). Effects of forest height and vertical

complexity on abundance and biodiversity of bats in Amazonia. Forest Ecology and Management, 391, 427–435.

https://doi.org/10.1016/j.foreco.2017.02.039

McCarthy, B. C., & Magurran, A. E. (2004). Measuring biological diversity. Journal of the Torrey Botanical

Society, 131(3), 277. https://doi.org/10.2307/4126959

McNab, B. K. (1989). Temperature regulation and rate of metabolism in three Bornean Bats. Journal of

Mammalogy, 70(1), 153–161. https://doi.org/10.2307/1381678

rainforests.

Medellín, R. A., Equihua, M., & Amin, M. A. (2000). Bat diversity and abundance as indicators of disturbance in

Neotropical

Conservation Biology, 14(6), 1666–1675. https://doi.org/10.1111/j.1523

2000.99068.x

important

Méndez, L., Viana, D. S., Alzate, A., Kissling, W. D., Eiserhardt, W. L., Rozzi, R., Rakotoarinivo, M., & Onstein,

R. E. (2022). Megafrugivores as fading shadows of the past: extant frugivores and the abiotic environment as the

most

determinants

https://doi.org/10.1111/ecog.05885

of

the

distribution

of

palms in Madagascar. Ecography.

Mohd Nasir, N., Muhammad Nasir, D., & Ramli, R. (2021). Diversity of bats in three selected forest types in

Peninsular Malaysia. Turkish Journal of Zoology, 45(2), 142–155. https://doi.org/10.3906/zoo-1912-50

Mohd Top, M., Keen, C. J., Senawi, J., Johari, N. F., & Rahim, A. B. A. B. (2021). Current status of bat diversity

and conservation in Universiti Putra Malaysia and its forest reserves. Journal of Sustainability Science and

Management, 16(7), 237-259. https://doi.org/10.46754/jssm.2021.10.018

Monadjem, A., Taylor, P. J., Cotterill, F. P. D., & Schoeman, M. C. (2013). Bats of southern and central Africa.

Journal of Mammalogy, Volume 94(2), 518–519. https://doi.org/10.1644/12-MAMM-R-184.1

Munian, K., Azman, S. M., Ruzman, N. A., Fauzi, N. F. M., & Zakaria, A. N. (2020). Diversity and composition

of volant and non-volant small mammals in northern Selangor State Park and adjacent forest of Peninsular

Malaysia. Biodiversity data journal, 8(e50304), 1-21. https://doi.org/10.3897%2FBDJ.8.e50304

Muscarella, R. & Fleming, T. H. (2007). The role of frugivorous bats in tropical forest succession. Biological

Reviews, 82(4), 573-590. https://doi.org/10.1111/j.1469-185X.2007.00026.x

Nicieza, A. G., & Álvarez, D. (2008). Statistical analysis of structural compensatory growth: how can we reduce

the rate of false detection? Oecologia, 159(1), 27–39. https://doi.org/10.3161/15081109ACC2021.23.1.015

Noormi, R., Shamsuddin, R. A. A., Akmal Shukri, A. M., Sahabudin, N. S. L., Abdul Rahman, R., & Abdul

Mutalib, S. N. (2018). Species composition and biodiversity of organisms in University of Technology Mara

(UiTM) Kuala Pilah, Negeri Sembilan, Malaysia. Journal of Academia, 6(2), 18-27.

Okpiliya, F. I. (2012). Ecological diversity indices: Any hope for one again. Journal of Environment and Earth

Science, 2(10), 45-52. https://core.ac.uk/download/pdf/234662987.pdf

O’Mara, M. T., Amorim, F., Scacco, M., McCracken, G. F., Safi, K., Mata, V., Tomé, R., Swartz, S., Wikelski,

M., Beja, P., Rebelo, H., & Dechmann, D. K. N. (2021). Bats use topography and nocturnal updrafts to fly high

and fast. Current Biology, 31(6), 1311-1316.e4. https://doi.org/10.1016/j.cub.2020.12.042

Oyler-McCance, S. J., Fike, J. A., Lukacs, P. M., Sparks, D. W., O'Shea, T. J., & Whitaker Jr, J. O. (2018). Genetic

mark–recapture improves estimates of maternity colony size for Indiana bats. Journal of Fish and Wildlife

Management, 9(1), 25-35. https://doi.org/10.3996/122016-JFWM-093

Payne, J., Francis, C.M. & Phillipps, K. (1985). A field guide to the mammals of Borneo. Kota Kinabalu: The

Sabah Society and World Wildlife Fund Malaysia, pp. 332.

Pérez-Torres, J., Teresa Herrera-Sepúlveda, M., & Pantoja-Peña, G. (2020). Cómo citar el artículo Número

completo Más información del artículo Página de la revista en redalyc.org Sistema de Información Científica

Redalyc Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin

fines de lucro, desarrollado bajo la iniciativa de acceso abierto. A Device for Capturing Social Bats in Caves,

(1), 206–210. https://doi.org/10.31687/saremMN.20.27.1.0.09

Pigeon, G., Festa-Bianchet, M., & Pelletier, F. (2017). Long-term fitness consequences of early environment in a

long-lived ungulate. Proceedings of the Royal Society B: Biological Sciences, 284(1853), 20170222.

https://doi.org/10.1098/rspb.2017.0222

Potter, T. I., Greenville, A. C., & Dickman, C. R. (2018). Assessing the potential for intraguild predation among

taxonomically disparate micro-carnivores: marsupials and arthropods. Royal Society Open Science, 5(5), 171872.

https://doi.org/10.1098/rsos.171872

Presley, S. J., & Willig, M. R. (2022). From island biogeography to landscape and metacommunity ecology: A

macroecological perspective of bat communities. Annals of the New York Academy of Sciences.

https://doi.org/10.1111/nyas.14785

Rahman, S. (2010). Six decades of agricultural land use change in Bangladesh: Effects on crop diversity,

productivity, food availability and the environment, 1948-2006. Singapore Journal of Tropical Geography, 31(2),

–269. https://doi.org/10.1111/j.1467-9493.2010.00394.x

Reinegger, R. D., Oleksy, R. Z., Bissessur, P., Naujeer, H., & Jones, G. (2021). First come, first served: fruit

availability to keystone bat species is potentially reduced by invasive macaques. Journal of Mammalogy.

https://doi.org/10.1093/jmammal/gyaa182

Ricker, W. E., & Smith, H. D. (1975). A revised interpretation of the history of the Skeena River sockeye salmon

(Oncorhynchus nerka). Journal of the Fisheries Board of Canada, 32(8), 1369-1381.

Ripperger, S. P., Rehse, S., Wacker, S., Kalko, E. K. V., Schulz, S., Rodriguez-Herrera, B., & Ayasse, M. (2019).

Nocturnal scent in a “bird-fig”: A cue to attract bats as additional dispersers?. PLOS ONE, 14(8), e0220461.

https://doi.org/10.1371/journal.pone.0220461

Philippine

Roberts, T. E. (2006). History, ocean channels, and distance determine phylogeographic patterns in three

widespread

fruit

bats

(Pteropodidae).

https://doi.org/10.1111/j.1365-294x.2006.02928.x

Molecular

Ecology,

(8),

–2199.

Russo, D., Ancillotto, L., Hughes, A. C., Galimberti, A., & Mori, E. (2017). Collection of voucher specimens for

bat research: conservation, ethical implications, reduction, and alternatives. Mammal Review, 47(4), 237–246.

https://doi.org/10.1111/mam.12095

Schmieder, D. A., Benítez, H. A., Borissov, I. M., & Fruciano, C. (2015). Bat species comparisons based on

external morphology: A test of traditional versus geometric morphometric approaches. PLOS ONE, 10(5),

e0127043. https://doi.org/10.1371/journal.pone.0127043

Shahab, M. A., Abdullah, R., & B. Aziz, S. (2020). Structural, morphological, electrical and electrochemical

properties of pva: Cs-based proton-conducting polymer blend electrolytes. Membranes, 10(4), 71.

https://doi.org/10.3390/membranes10040071

Siebert, F., van Staden, N., Komape, D. M., Swemmer, A. M., & Siebert, S. J. (2021). Effects of land-use change

on herbaceous vegetation in a semi-arid Mopaneveld savanna. Bothalia. African Biodiversity and Conservation,

(1), 1–26. https://doi.org/10.38201/btha.abc.v51.i1.8

Simmons, N. B. (2005). Order Chiroptera,. In D. E. Wilson and D. M. Reeder (ed.), Mammal species of the world:

a taxonomic and geographic reference, 3rd ed. Johns Hopkins University Press, Baltimore, Md. pp. 312-529.

Simmons, N. B., & Cirranello, A. L. (2020). Bat Species of the World: A taxonomic and geographic

database. https://www.batnames.org/. [Access online 17 April 2020]

Srinivasulu, C., Racey, P. A., & Mistry, S. (2010). A key to the bats (Mammalia: Chiroptera) of South Asia.

Journal of Threatened Taxa, 2, 1001-1076. https://doi.org/10.11609/JoTT.o2352.1001-76

Stockwell, E. F. (2001). Morphology and flight manoeuvrability in new world leaf-nosed bats (Chiroptera:

Phyllostomidae). Journal of Zoology, 254(4), 505–514. https://doi.org/10.1017/s0952836901001005

index

Sun, W., & Ren, C. (2021). The impact of energy consumption structure on China’s carbon emissions: Taking the

Shannon–Wiener

as

a

http://doi.org/10.1016/j.egyr.2021.04.061

new

indicator.

Energy

Reports,

,

-2614.

Trevelin, L. C., Novaes, R. L. M., Colas-Rosas, P. F., Benathar, T. C. M., & Peres, C. A. (2017). Enhancing

sampling design in mist-net bat surveys by accounting for sample size optimization. PLOS ONE, 12(3), e0174067.

https://doi.org/10.1371/journal.pone.0174067

Turcios-Casco, M. A., Ávila-Palma, H. D., Trejo, E. J. O., Orellana, J. A. S., Mazier, D. I. O., Meza-Flores, D.

E., & Velásquez, A. (2020). Rare or misidentified? On the external identification of the neglected Artibeus

inopinatus Davis & Carter, 1964 (Chiroptera, Phyllostomidae) in Honduras. Evolutionary Systematics. 4, 35–43.

https://doi.org/10.3897/evolsyst.4.49377

Ulfah, M., Fajri, S. N., Nasir, M., Hamsah, K., & Purnawan, S. (2019). Diversity, evenness and dominance index

reef fish in Krueng Raya Water, Aceh Besar. IOP Conf. Series: Earth and Environmental Science, 348(1), 012074.

https://doi.org/10.1088/1755-1315/348/1/012074

Wang, R., Gamon, J. A., Schweiger, A. K., Cavender-Bares, J., Townsend, P. A., Zygielbaum, A. I., & Kothari,

S. (2018). Influence of species richness, evenness, and composition on optical diversity: A simulation study.

Remote Sensing of Environment, 211, 218–228. https://doi.org/10.1016/j.rse.2018.04.010

Wanger, T. C., Darras, K., Bumrungsri, S., Tscharntke, T., & Klein, A.-M. (2014). Bat pest control contributes to

food security in Thailand. Biological Conservation, 171, 220–223. https://doi.org/10.1016/j.biocon.2014.01.030

Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffon-chio, D., Heylen, K., De Vos, P, Verstraete, W. &

Boon, N., 2009, 'Initial community evenness favours functionality under selective stress', Nature, 458(7238), 623

, https://doi.org/10.1038/nature07840

Zakaria, N., Tarmizi, A. A., Zuki, M. A. M., Ahmad, A. B., Mamat, M. A., & Abdullah, M. T. (2020). Bats data

from fragmented forests in Terengganu State, Malaysia. Data in Brief, 30, 105567.

https://doi.org/10.1016/j.dib.2020.105567

Zamora-Marín, J. M., Zamora-López, A., Calvo, J. F., & Oliva-Paterna, F. J. (2021). Comparing detectability

patterns of bird species using multi-method occupancy modelling. Scientific Reports, 11(1), 2558.

https://doi.org/10.1038/s41598-021-81605-w

Downloads

Published

2022-10-31

Most read articles by the same author(s)