THE ABUNDANCE OF FRUIT BATS IN UITM KUALA PILAH AND ITS MORPHOMETRIC ANALYSIS
Keywords:
Composition, regression, growth, C. brachyotis, M. minimusAbstract
There are currently few records of anthropogenic effects on bat composition, particularly in Malaysia.
The objectives of this study are to determine the abundance and growth rate of bats at UiTM Negeri
Sembilan Kampus Kuala Pilah (UiTMCNS). Mist nets with 2.5 x 9 x 4cm in size were set up at five
checkpoints for sample collection, followed by species identification and morphological measurement
of each sample. A total of 13 individuals of Cynopterus brachyotis and 9 individuals of Macroglossus
minimus were collected from 4 checkpoints (checkpoint 1, 2, 3 and 5), with non-individual of bat was
collected from checkpoint 4. The number of C. brachyotis and M. minimus were recorded at checkpoint;
1 (6, 4) individual, 2 (3, 2) individuals, 3 (3, 1) individuals and 5 (1, 2) individuals, respectively. Both
C. brachyotis and M. minimus are classified as fruit bats. The Length-Weight Regressions (LWRs) of
both species caught shows positive allometric growth as the ‘b’ value is more than 3. The parabolic
form of LWRs for this study is W=24.384L4.853. The result of LWRs analysis prove that the study area
is still suitable to become the fruit bat’s habitat. This research will help to increase data on bats
composition in Negeri Sembilan, especially UiTMCNS. The data also can be used as a guideline for
future researchers and important for conservation planning of the species in Negeri Sembilan.
References
Adaka, G., Ndukwe, E., & Nlewadim, A. (2015). Length-weight relationship of some fish species in a tropical
rainforest river in southeast Nigeria, Transylvanian Review of Systematical and Ecological Research, 17.2, 73
https://doi.org/10.1515/trser-2015-0065
Afelt, A., Lacroix, A., Zawadzka-Pawlewska, U., Pokojski, W., Buchy, P., & Frutos, R. (2018). Distribution of
bat-borne viruses and environment patterns. Infection, Genetics and Evolution, 58, 181–191.
https://doi.org/10.1016/j.meegid.2017.12.009
Ahmad Ruzman, N. H. (2016). Cynopterus brachyotis. https://mybis.gov.my/art/162 . [Access online 15
November 2016]
regulation,
Albernaz, E. S. S., Santiago, C. S., Guerra, L. H. A., Santos, F. C. A., Góes, R. M., Morielle‐Versute, E., Taboga,
S. R., Souza, C. C., & Beguelini, M. R. (2021). The prostate of the bat Artibeus lituratus: Seasonal variations,
abiotic
and
hormonal
https://doi.org/10.1002/jmor.21362
control.
Journal
of
Morphology,
(8),
–1207.
Alpízar, P., Schneider, J., & Tschapka, M. (2020). Bats and bananas: Simplified diet of the nectar-feeding bat
Glossophaga soricina (Phyllostomidae: Glossophaginae) foraging in Costa Rican banana plantations. Global
Ecology and Conservation, 24, e01254. https://doi.org/10.1016/j.gecco.2020.e01254
Ashraf, M., & Habjoka, N. (2013). Tropical mangroves; biologically most diverse ‘the global 200’ ecosystem:
Megachiroptera as key ecological and conservation tool’. MAP Newsletter, 315.
Atama, C. I., Okeke, O. C., Ekeh, F. N., Ezenwaji, N. E., Onah, I. E., Ivoke, N., & Eyo, J. E. (2013). Length
weight relationship and condition factor of six cichlid (cichilidae, perciformes) species of Anambra River, Nigeria.
Journal of Fisheries and Aquaculture, 4(2), 82-86.
Bakar, M. A. A. A., & Faudzi, M. F. (2019). The preliminary study composition of bat species in University of
Technology Mara (UiTM) Kuala Pilah, Negeri Sembilan, Malaysia. Gading Journal of Science and Technology,
(02), 73–78.
Beilke, E. A., Blakey, R. V., & O’Keefe, J. M. (2021). Bats partition activity in space and time in a large,
heterogeneous landscape. Ecology and Evolution. 11(11), 6513-6526. https://doi.org/10.1002/ece3.7504
Berge, E. (2020). Assessing the relationships between pollinator-friendly plantings and birds, bats and white
tailed deer on farms in the Coastal Plain of Virginia and Maryland [Master thesis, Virginia Polytechnic Institute
and State University]. Virginia Tech Data Repository. http://hdl.handle.net/10919/100984.
Bize, P., Metcalfe, N. B., & Roulin, A. (2006). Catch-up growth strategies differ between body structures:
Interactions between age and structure-specific growth in wild nestling alpine swifts. Functional Ecology, 20(5),
–864. https://www.jstor.org/stable/3806594
Bradford, A. (2018). Bats: Fuzzy Flying Mammals. https://www.livescience.com/28272-bats.html [Access online
October 2018].
Burke, K., Waldron, C., Mentor, I., & Low, E. (2021). Habitat preferences and acoustic behaviours of bats in the
Beaverhill Natural Area in 2021. http://beaverhillbirds.com/media/2215/2021-acoustics-research-report-final
formatted.pdf [Access online 13 July 2021].
Camargo, P. H. S. A., Pizo, M. A., Brancalion, P. H. S., & Carlo, T. A. (2020). Fruit traits of pioneer trees structure
seed dispersal across distances on tropical deforested landscapes: Implications for restoration. Journal of Applied
Ecology, 57(12), 2329–2339. https://doi.org/10.1111/1365-2664.13697
Castillo-Figueroa, D. (2022). Does Bergmann’s rule apply in bats? Evidence from two neotropical species.
Neotropical Biodiversity, 8(1), 200-221. https://doi.org/10.1080/23766808.2022.2075530
Cheney, J. A., Ton, D., Konow, N., Riskin, D. K., Breuer, K. S., & Swartz, S. M. (2014). Hindlimb motion during
steady flight of the Lesser Dog-Faced Fruit Bat, Cynopterus brachyotis. PLoS ONE, 9(5), e98093.
https://doi.org/10.1371/journal.pone.0098093
Claireau, F., Kerbiriou, C., Charton, F., de Almeida Braga, C., Ferraille, T., Julien, J. F., Machon, N., Allegrini,
B., Puechmaille, S. J., & Bas, Y. (2021). Bat overpasses help bats to cross roads safely by increasing their flight
height. Acta Chiropterologica, 23(1), 189–198. https://doi.org/10.3161/15081109ACC2021.23.1.015
Community, N. P. E. (2021). The epigenetics of aging in bats. Nature Portfolio Ecology & Evolution Community.
https://natureecoevocommunity.nature.com/posts/the-epigenetics-of-aging-in-bats [Access online 9 March 2021]
Crane, M., Silva, I., Grainger, M. J., & Gale, G. A. (2020). On a wing and a prayer: limitations and gaps in global
bat wing morphology trait data. On a wing and a prayer: Limitations and gaps in global bat wing morphology trait
data. Mammal Review, 1-31. https://doi.org/10.1101/2020.12.07.414276
Cunto, G. C., & Bernard, E. (2012). Neotropical Bats as Indicators of Environmental Disturbance: What is the
emerging message?. Acta Chiropterologica, 14(1), 143–151. https://doi.org/10.3161/150811012x654358
Daly, A., Baetens, J., & De Baets, B. (2018). Ecological diversity: Measuring the unmeasurable. Mathematics,
(7), 119. https://doi.org/10.3390/math6070119
Dharmayanti, N. L. P. I., Nurjanah, D., Nuradji, H., Maryanto, I., Exploitasia, I., & Indriani, R. (2021). Molecular
detection of bat coronaviruses in three bat species in Indonesia. Journal of Veterinary Science, 22(6): e70.
https://doi.org/10.4142/jvs.2021.22.e70
Elangovan, V., Yuvana Satya Priya, E., Raghuram, H., & Marimuthu, G. (2007). Wing morphology and flight
development in the short-nosed fruit bat Cynopterus sphinx. Zoology, 110(3), 189–196.
https://doi.org/10.1016/j.zool.2007.02.001
Elias,
N.
A.
(2021).
Habitalk:
the
bats
of
Penang -
our
heroes.
https://habitatfoundation.org.my/2021/02/09/habitalk-the-bats-of-penang-our-invisible-heroes/ [Access online 22
January 2022].
invisible
Estrada, V. S., Meyer, C. F. J., & Kalko, E. K. V. (2010). Effects of forest fragmentation on aerial insectivorous
bats in a land-bridge island system. Biological Conservation, 143(3), 597-608. 10.1016/j.biocon.2009.11.009
Ferreira, D. F., Jarrett, C., Atagana, P. J., Powell, L. L., & Rebelo, H. (2021). Are bat mist nets ideal for capturing
bats? from ultrathin to bird nets, a field test. Journal of Mammalogy, 102(6), 1627–1634.
https://doi.org/10.1093/jmammal/gyab109
Fontaine, A., Simard, A., Dutel, J., Dubois, B., & Elliott, K. (2021). Using mounting, orientation, and design to
improve bat box thermodynamics in a northern temperate environment. Scientific Reports, 11, 7728.
https://doi.org/10.1038/s41598-021-87327-3
Francis, C. M., Borisenko, A. V., Ivanova, N. V., Eger, J. L., Lim, B. K., Guillén-Servent, A, Kruskop, S. V.,
Mackie, I., & Hebert, P. D. N. (2010). The role of DNA barcodes in understanding and conservation of mammal
diversity in Southeast Asia. PloS one, 5(9), e12575. https://doi.org/10.1371/journal.pone.0012575
Francis, C. M. (2008). A field-guide to the mammals of South-East Asia. New Holland, London, UK., 392 pp.
Frick, W. F., Kingston, T., & Flanders, J. (2020). A review of the major threats and challenges to global bat
conservation. Annals of the New York Academy of Sciences, 1469, 5–25. https://doi.org/10.1111/nyas.14045
Froese, R. (2006). Cube law, condition factor and weight-length relationships: history, meta-analysis and
recommendations. Journal of Applied Ichthyology, 22, 241-253.
Gannon, W. L., O’Farrell, M. J., Corben, C., & Bedrick, E. J. (2004). Call character lexicon and analysis of field
recorded bat echolocation calls. Echolocation in Bats and Dolphins (eds J.A. Thomas, C.F. Moss & M. Vater),
pp. 478–486. University of Chicago Press, Chicago, IL.
García-Morales, R., Badano, E. I., & Moreno, C. E. (2013). Response of neotropical bat assemblages to human
land use. Conservation Biology, 27(5), 1096–1106. https://10.1111/cobi.12099.
Gardiner, J. D., Codd, J. R., & Nudds, R. L. (2011). An association between ear and tail morphologies of bats and
their foraging style. Canadian Journal of Zoology, 89, 90-99
Giacomini, G., Herrel, A., Chaverri, G., Brown, R. P., Russo, D., Scaravelli, D., & Meloro, C. (2021). Functional
correlates of skull shape in Chiroptera: feeding and echolocation adaptations. Integrative Zoology. 17, 430–442.
https://doi.org/10.1111/1749-4877.12564
Gomes, G. A., Reid, F., & Tuttle, M. D. (2015). Bats of Trinidad and Tobago: A Field Guide and Natural History.
Trinibats. https://www.nhbs.com/bats-of-trinidad-and-tobago-book
Costa
Haave-Audet, E., Audet, D., Monge-Velazquez, M., Flatt, E., & Whitworth, A. (2021). Unexpected diversity in
regenerating sites stresses the importance of baselines: a case study with bats (Order Chiroptera) on the Osa
Peninsula,
Rica.
Tropical
https://doi.org/10.1177/19400829211028118
Conservation
Science,
,
Håkansson, J., Jakobsen, L., Hedenström, A., & Johansson, L. C. (2017). Body lift, drag and power are relatively
higher in large-eared than in smalleared bat species. Journal of the Royal Society Interface, 14, 20170455.
http://doi.org/10.1098/rsif.2017.0455
Hector, K. L., & Nakagawa, S. (2012). Quantitative analysis of compensatory and catch-up growth in diverse
taxa. Journal of Animal Ecology, 81(3), 583–593. https://doi.org/10.1111/j.1365-2656.2011.01942.x
Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54, 427–431.
https://doi.org/10.2307/1934352
Hilborn, E., & Walters, C. J. (2001). Quantitative fisheries stock assessment: choice, dynamics and uncertainty,
New York, Chapman and Hall, pp. 570.
Holbech, L. H. (2020). The elevated mist‐net frame: A robust and versatile manoeuvrable design for capturing
upper strata birds. Methods in Ecology and Evolution, 11(9), 1086–1091. https://doi.org/10.1111/2041
x.13425
Hornok, S., Meyer-Kayser, E., Kontschán, J., Takács, N., Plantard, O., Cullen, S., Gaughran, A., Szekeres, S.,
Majoros, G., Beck, R., Boldogh, S. A., Horváth, G., Kutasi, C., & Sándor, A. D. (2021). Morphology of
Pholeoixodes species associated with carnivores in the western Palearctic: Pictorial key based on molecularly
identified Ixodes (Ph.) canisuga, I. (Ph.) hexagonus and I. (Ph.) kaiseri males, nymphs and larvae. Ticks and Tick
Borne Diseases, 12(4), 101715. https://doi.org/10.1016/j.ttbdis.2021.101715
Isa, M. M., Rawi, C. S., Rosla, R., Anuar, S., & Shah, M. (2010). Length-weight relationships of freshwater fish
species in Kerian River basin and Pedu Lake. Research Journal of Fisheries and Hydrobiology, 5(1), 1-8.
Jaramillo, J. M. (2022). Jamaican bats can smell food and drive themselves bananas. Journal of Experimental
Biology, 225(3), JEB243479. https://doi.org/10.1242/jeb.243479
Kasso, M., & Balakrishnan, M. (2013). Ecological and economic importance of bats (Order Chiroptera). ISRN
Biodiversity, 2013(187415), 1–9. https://doi.org/10.1155/2013/187415
Khajeh, A., Mohammadi, Z., Ghorbani, F., & Jahantigh, H. (2021). Molecular and morphometric characterization
of fruit bats of the genus Rousettus Gray, 1821 (Chiroptera: Pteropodidae) in Iran. Zoology in the Middle East,
(1), 1-11. https://doi.org/10.1080/09397140.2020.1859977
Kiernan,
D.
(2021).
1:
Introduction,
Simpson’s
Index
and
Shannon-Weiner
Index.
/10%3A_Quantitative_Measures_of_Diversity_Site_Similarity_and_Habitat_Suitability/10.01%3A_Introductio
n__Simpsons_Index_and_Shannon-Weiner_Index [Access online 26 July 2021]
Kingston, T., Francis, C., Akbar, Z., & Kunz, T. (2003). Species richness in an insectivorous bat assemblage from
Malaysia. Journal of Tropical Ecology, 19(1), 67-79. https://doi.org/10.1017/S0266467403003080
Kofron, C. P. (2007). Reproduction of the long-tongued nectar bat Macroglossus minimus (Pteropodidae) in
Brunei, Borneo. Acta Zoologica, 89(1), 53–58. https://doi.org/10.1111/j.1463-6395.2007.00291.x
Kurta, A., Foster, R. W., Daly, B. A., Wilson, A. K., Slider, R. M., Rockey, C. D., Rockey, J. M., Long, B. L.,
Auteri, G. G., Collins, J. D., White, J. P., Kaarakka, H. M., Redell, J. A., & Reeder, D. M. (2020). Exceptional
longevity in little brown bats still occurs, despite presence of white-nose syndrome. Journal of Fish and Wildlife
Management, 11(2), 583–587. https://doi.org/10.3996/JFWM-20-039
implications
for
Lane, D. J. W., Kingston, T., & Lee, B. P. Y-H. (2006). Dramatic decline in bat species richness in Singapore,
with
Southeast
https://doi.org/10.1016/j.biocon.2006.03.005
Asia.
Biological
Conservation,
(4),
–593.
Larsen, R. J. (2007). Mist net interaction, sampling effort, and species of bats captured on Montserrat, British
West Indies. Graduate theses. South Dakota State University.
Laurindo, R. D. S., Gregorin, R., & Tavares, D. C. (2017). Effects of biotic and abiotic factors on the temporal
dynamic of bat-fruit interactions. Acta Oecologica, 83, 38–47. https://doi.org/10.1016/j.actao.2017.06.009
Lavery, T. H., Leary, T. N., Shaw, C., Tahi, M., Posala, C., & Pierce, R. (2021). Ecology and conservation of bats
in Temotu Province, Solomon Islands and Torba Province, Vanuatu. Pacific Conservation Biology, 27(1), 27.
https://doi.org/10.1071/pc20035
Law, B. S., & Blakey, R. V. (2021). Bats in temperate forests: where are the trends in bat populations?. In 50
Years of bat research Springer, Cham. pp. 93-104.
Lei, M., & Dong, D. (2016). Phylogenomic analyses of bat subordinal relationships based on transcriptome data.
Scientific Reports, 6(27726), 1-8. https://doi.org/10.1038/srep27726
MacInnis, G., & Forrest, J. R. K. (2019). Pollination by wild bees yields large strawberries than pollination by
honey bees. Journal of Applied Ecology, 56(4), 824-832. https://doi.org/10.1111/1365-2664.13344
Marinello, M. M., & Bernard, E. (2014). Wing morphology of Neotropical bats: a quantitative and qualitative
analysis with implications for habitat use. Canadian Journal of Zoology, 92(2), 141–147.
https://doi.org/10.1139/cjz-2013-0127
Martins, A. C. M., Willig, M. R., Presley, S. J., & Marinho-Filho, J. (2017). Effects of forest height and vertical
complexity on abundance and biodiversity of bats in Amazonia. Forest Ecology and Management, 391, 427–435.
https://doi.org/10.1016/j.foreco.2017.02.039
McCarthy, B. C., & Magurran, A. E. (2004). Measuring biological diversity. Journal of the Torrey Botanical
Society, 131(3), 277. https://doi.org/10.2307/4126959
McNab, B. K. (1989). Temperature regulation and rate of metabolism in three Bornean Bats. Journal of
Mammalogy, 70(1), 153–161. https://doi.org/10.2307/1381678
rainforests.
Medellín, R. A., Equihua, M., & Amin, M. A. (2000). Bat diversity and abundance as indicators of disturbance in
Neotropical
Conservation Biology, 14(6), 1666–1675. https://doi.org/10.1111/j.1523
2000.99068.x
important
Méndez, L., Viana, D. S., Alzate, A., Kissling, W. D., Eiserhardt, W. L., Rozzi, R., Rakotoarinivo, M., & Onstein,
R. E. (2022). Megafrugivores as fading shadows of the past: extant frugivores and the abiotic environment as the
most
determinants
https://doi.org/10.1111/ecog.05885
of
the
distribution
of
palms in Madagascar. Ecography.
Mohd Nasir, N., Muhammad Nasir, D., & Ramli, R. (2021). Diversity of bats in three selected forest types in
Peninsular Malaysia. Turkish Journal of Zoology, 45(2), 142–155. https://doi.org/10.3906/zoo-1912-50
Mohd Top, M., Keen, C. J., Senawi, J., Johari, N. F., & Rahim, A. B. A. B. (2021). Current status of bat diversity
and conservation in Universiti Putra Malaysia and its forest reserves. Journal of Sustainability Science and
Management, 16(7), 237-259. https://doi.org/10.46754/jssm.2021.10.018
Monadjem, A., Taylor, P. J., Cotterill, F. P. D., & Schoeman, M. C. (2013). Bats of southern and central Africa.
Journal of Mammalogy, Volume 94(2), 518–519. https://doi.org/10.1644/12-MAMM-R-184.1
Munian, K., Azman, S. M., Ruzman, N. A., Fauzi, N. F. M., & Zakaria, A. N. (2020). Diversity and composition
of volant and non-volant small mammals in northern Selangor State Park and adjacent forest of Peninsular
Malaysia. Biodiversity data journal, 8(e50304), 1-21. https://doi.org/10.3897%2FBDJ.8.e50304
Muscarella, R. & Fleming, T. H. (2007). The role of frugivorous bats in tropical forest succession. Biological
Reviews, 82(4), 573-590. https://doi.org/10.1111/j.1469-185X.2007.00026.x
Nicieza, A. G., & Álvarez, D. (2008). Statistical analysis of structural compensatory growth: how can we reduce
the rate of false detection? Oecologia, 159(1), 27–39. https://doi.org/10.3161/15081109ACC2021.23.1.015
Noormi, R., Shamsuddin, R. A. A., Akmal Shukri, A. M., Sahabudin, N. S. L., Abdul Rahman, R., & Abdul
Mutalib, S. N. (2018). Species composition and biodiversity of organisms in University of Technology Mara
(UiTM) Kuala Pilah, Negeri Sembilan, Malaysia. Journal of Academia, 6(2), 18-27.
Okpiliya, F. I. (2012). Ecological diversity indices: Any hope for one again. Journal of Environment and Earth
Science, 2(10), 45-52. https://core.ac.uk/download/pdf/234662987.pdf
O’Mara, M. T., Amorim, F., Scacco, M., McCracken, G. F., Safi, K., Mata, V., Tomé, R., Swartz, S., Wikelski,
M., Beja, P., Rebelo, H., & Dechmann, D. K. N. (2021). Bats use topography and nocturnal updrafts to fly high
and fast. Current Biology, 31(6), 1311-1316.e4. https://doi.org/10.1016/j.cub.2020.12.042
Oyler-McCance, S. J., Fike, J. A., Lukacs, P. M., Sparks, D. W., O'Shea, T. J., & Whitaker Jr, J. O. (2018). Genetic
mark–recapture improves estimates of maternity colony size for Indiana bats. Journal of Fish and Wildlife
Management, 9(1), 25-35. https://doi.org/10.3996/122016-JFWM-093
Payne, J., Francis, C.M. & Phillipps, K. (1985). A field guide to the mammals of Borneo. Kota Kinabalu: The
Sabah Society and World Wildlife Fund Malaysia, pp. 332.
Pérez-Torres, J., Teresa Herrera-Sepúlveda, M., & Pantoja-Peña, G. (2020). Cómo citar el artículo Número
completo Más información del artículo Página de la revista en redalyc.org Sistema de Información Científica
Redalyc Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin
fines de lucro, desarrollado bajo la iniciativa de acceso abierto. A Device for Capturing Social Bats in Caves,
(1), 206–210. https://doi.org/10.31687/saremMN.20.27.1.0.09
Pigeon, G., Festa-Bianchet, M., & Pelletier, F. (2017). Long-term fitness consequences of early environment in a
long-lived ungulate. Proceedings of the Royal Society B: Biological Sciences, 284(1853), 20170222.
https://doi.org/10.1098/rspb.2017.0222
Potter, T. I., Greenville, A. C., & Dickman, C. R. (2018). Assessing the potential for intraguild predation among
taxonomically disparate micro-carnivores: marsupials and arthropods. Royal Society Open Science, 5(5), 171872.
https://doi.org/10.1098/rsos.171872
Presley, S. J., & Willig, M. R. (2022). From island biogeography to landscape and metacommunity ecology: A
macroecological perspective of bat communities. Annals of the New York Academy of Sciences.
https://doi.org/10.1111/nyas.14785
Rahman, S. (2010). Six decades of agricultural land use change in Bangladesh: Effects on crop diversity,
productivity, food availability and the environment, 1948-2006. Singapore Journal of Tropical Geography, 31(2),
–269. https://doi.org/10.1111/j.1467-9493.2010.00394.x
Reinegger, R. D., Oleksy, R. Z., Bissessur, P., Naujeer, H., & Jones, G. (2021). First come, first served: fruit
availability to keystone bat species is potentially reduced by invasive macaques. Journal of Mammalogy.
https://doi.org/10.1093/jmammal/gyaa182
Ricker, W. E., & Smith, H. D. (1975). A revised interpretation of the history of the Skeena River sockeye salmon
(Oncorhynchus nerka). Journal of the Fisheries Board of Canada, 32(8), 1369-1381.
Ripperger, S. P., Rehse, S., Wacker, S., Kalko, E. K. V., Schulz, S., Rodriguez-Herrera, B., & Ayasse, M. (2019).
Nocturnal scent in a “bird-fig”: A cue to attract bats as additional dispersers?. PLOS ONE, 14(8), e0220461.
https://doi.org/10.1371/journal.pone.0220461
Philippine
Roberts, T. E. (2006). History, ocean channels, and distance determine phylogeographic patterns in three
widespread
fruit
bats
(Pteropodidae).
https://doi.org/10.1111/j.1365-294x.2006.02928.x
Molecular
Ecology,
(8),
–2199.
Russo, D., Ancillotto, L., Hughes, A. C., Galimberti, A., & Mori, E. (2017). Collection of voucher specimens for
bat research: conservation, ethical implications, reduction, and alternatives. Mammal Review, 47(4), 237–246.
https://doi.org/10.1111/mam.12095
Schmieder, D. A., Benítez, H. A., Borissov, I. M., & Fruciano, C. (2015). Bat species comparisons based on
external morphology: A test of traditional versus geometric morphometric approaches. PLOS ONE, 10(5),
e0127043. https://doi.org/10.1371/journal.pone.0127043
Shahab, M. A., Abdullah, R., & B. Aziz, S. (2020). Structural, morphological, electrical and electrochemical
properties of pva: Cs-based proton-conducting polymer blend electrolytes. Membranes, 10(4), 71.
https://doi.org/10.3390/membranes10040071
Siebert, F., van Staden, N., Komape, D. M., Swemmer, A. M., & Siebert, S. J. (2021). Effects of land-use change
on herbaceous vegetation in a semi-arid Mopaneveld savanna. Bothalia. African Biodiversity and Conservation,
(1), 1–26. https://doi.org/10.38201/btha.abc.v51.i1.8
Simmons, N. B. (2005). Order Chiroptera,. In D. E. Wilson and D. M. Reeder (ed.), Mammal species of the world:
a taxonomic and geographic reference, 3rd ed. Johns Hopkins University Press, Baltimore, Md. pp. 312-529.
Simmons, N. B., & Cirranello, A. L. (2020). Bat Species of the World: A taxonomic and geographic
database. https://www.batnames.org/. [Access online 17 April 2020]
Srinivasulu, C., Racey, P. A., & Mistry, S. (2010). A key to the bats (Mammalia: Chiroptera) of South Asia.
Journal of Threatened Taxa, 2, 1001-1076. https://doi.org/10.11609/JoTT.o2352.1001-76
Stockwell, E. F. (2001). Morphology and flight manoeuvrability in new world leaf-nosed bats (Chiroptera:
Phyllostomidae). Journal of Zoology, 254(4), 505–514. https://doi.org/10.1017/s0952836901001005
index
Sun, W., & Ren, C. (2021). The impact of energy consumption structure on China’s carbon emissions: Taking the
Shannon–Wiener
as
a
http://doi.org/10.1016/j.egyr.2021.04.061
new
indicator.
Energy
Reports,
,
-2614.
Trevelin, L. C., Novaes, R. L. M., Colas-Rosas, P. F., Benathar, T. C. M., & Peres, C. A. (2017). Enhancing
sampling design in mist-net bat surveys by accounting for sample size optimization. PLOS ONE, 12(3), e0174067.
https://doi.org/10.1371/journal.pone.0174067
Turcios-Casco, M. A., Ávila-Palma, H. D., Trejo, E. J. O., Orellana, J. A. S., Mazier, D. I. O., Meza-Flores, D.
E., & Velásquez, A. (2020). Rare or misidentified? On the external identification of the neglected Artibeus
inopinatus Davis & Carter, 1964 (Chiroptera, Phyllostomidae) in Honduras. Evolutionary Systematics. 4, 35–43.
https://doi.org/10.3897/evolsyst.4.49377
Ulfah, M., Fajri, S. N., Nasir, M., Hamsah, K., & Purnawan, S. (2019). Diversity, evenness and dominance index
reef fish in Krueng Raya Water, Aceh Besar. IOP Conf. Series: Earth and Environmental Science, 348(1), 012074.
https://doi.org/10.1088/1755-1315/348/1/012074
Wang, R., Gamon, J. A., Schweiger, A. K., Cavender-Bares, J., Townsend, P. A., Zygielbaum, A. I., & Kothari,
S. (2018). Influence of species richness, evenness, and composition on optical diversity: A simulation study.
Remote Sensing of Environment, 211, 218–228. https://doi.org/10.1016/j.rse.2018.04.010
Wanger, T. C., Darras, K., Bumrungsri, S., Tscharntke, T., & Klein, A.-M. (2014). Bat pest control contributes to
food security in Thailand. Biological Conservation, 171, 220–223. https://doi.org/10.1016/j.biocon.2014.01.030
Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffon-chio, D., Heylen, K., De Vos, P, Verstraete, W. &
Boon, N., 2009, 'Initial community evenness favours functionality under selective stress', Nature, 458(7238), 623
, https://doi.org/10.1038/nature07840
Zakaria, N., Tarmizi, A. A., Zuki, M. A. M., Ahmad, A. B., Mamat, M. A., & Abdullah, M. T. (2020). Bats data
from fragmented forests in Terengganu State, Malaysia. Data in Brief, 30, 105567.
https://doi.org/10.1016/j.dib.2020.105567
Zamora-Marín, J. M., Zamora-López, A., Calvo, J. F., & Oliva-Paterna, F. J. (2021). Comparing detectability
patterns of bird species using multi-method occupancy modelling. Scientific Reports, 11(1), 2558.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Academia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.