A PRELIMINARY INVESTIGATION OF POLYANILINE/CHITOSAN COMPOSITE’S PHYSICOCHEMICAL PROPERTIES AND POTENTIAL ELECTROCHEMICAL APPLICATION
Keywords:
Polyaniline, Chitosan, Perfluorooctanoic acid, Screen-Printed Carbon Electrode, Electrochemical SensorAbstract
A polyaniline/chitosan (PANI/CHT) modified SPCE based sensor was developed and validated by
electrochemical detection of PFOA. The PANI/CHT composite was synthesized by chemical oxidative
polymerization technique. The synthesized material was characterized by scanning electron microscope
(SEM)-Energy dispersive X-ray spectroscopy (EDX), Thermal gravimetric analysis (TGA) and
Ultraviolet visible Spectroscopy (UV-Vis) techniques. Therefore, from the SEM result showed that the
combination of both materials give porous morphology which would further enhance the
electrochemical activity of PANI-CHT composite against PFOA. From the TGA analysis also revealed
that the addition of CHT to the PANI would increase the thermal stability of the composite compared
to the PANI. In addition, the redox properties of the modified SPCE were examined by cyclic
voltammetry studies. The investigation showed that PANI/CHT SPCE exhibit high electroactive surface
area compared to unmodified SPCE. The PANI/CHT SPCE recorded lowest detection limit (LOD) of
1.60 ppb with LOQ of 4.82 ppb, in the linear range of 25-50 ppb.
References
Ahrens, L., & Bundschuh, M. (2014). Fate and effects of poly- and perfluoroalkyl substances in the aquatic
environment:
A review. Environmental Toxicology and Chemistry, 33(9), 1921–1929.
https://doi.org/10.1002/etc.2663
Anisimov, Y. A., Cree, D. E., & Wilson, L. D. (2020). Preparation of Multicomponent Biocomposites and
Characterization of Their Physicochemical and Mechanical Properties. Journal of Composites Science, 4(1), 18.
https://doi.org/10.3390/jcs4010018
Agency for Toxic Substances and Disease Registry (Atsdr) (2004). Chlordane Chapter 2 . Health Effects. 21–449.
https://www.atsdr.cdc.gov/toxprofiles/tp31.pdf. [Access online 21 October 2022].
Cabuk, M., Yavuz, M., & Unal, H. I. (2014). Electrokinetic properties of biodegradable conducting polyaniline
graft-chitosan copolymer in aqueous and non-aqueous media. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 460, 494–501. https://doi.org/10.1016/j.colsurfa.2014.02.053
Che, B., Li, H., Zhou, D., Zhang, Y., Zeng, Z., Zhao, C., He, C., Liu, E., & Lu, X. (2019). Porous
polyaniline/carbon nanotube composite electrode for supercapacitors with outstanding rate capability and cyclic
stability. Composites Part B: Engineering, 165, 671–678. https://doi.org/10.1016/j.compositesb.2019.02.026
Chen, L. D., Lai, C. Z., Granda, L. P., Fierke, M. A., Mandal, D., Stein, A., Gladysz, J. A., & Bühlmann, P. (2013).
Fluorous membrane ion-selective electrodes for perfluorinated surfactants: Trace-level detection and in situ
monitoring of adsorption. Analytical Chemistry, 85(15), 7471–7477. https://doi.org/10.1021/ac401424j
Journal
Cordner, A., De La Rosa, V. Y., Schaider, L. A., Rudel, R. A., Richter, L., & Brown, P. (2019). Guideline levels
for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social
factors.
of
Exposure
Science
https://doi.org/10.1038/s41370-018-0099-9
Recent
and Environmental Epidemiology, 29(2), 157–171.
Dewitt, J. C., Peden-Adams, M. M., Keller, J. M., & Germolec, D. R. (2012). Immunotoxicity of Perfluorinated
Compounds:
Developments.
https://doi.org/10.1177/0192623311428473
Toxicologic
Pathology,
(2),
–311.
Dhivya, C., Vandarkuzhali, S. A. A., & Radha, N. (2019). Antimicrobial activities of nanostructured polyanilines
doped with aromatic nitro compounds. Arabian Journal of Chemistry, 12(8), 3785–3798.
https://doi.org/10.1016/j.arabjc.2015.12.005
EPA, (U.S. (2016). Drinking Water Health Advisories for PFOA and PFOS (Issue EPA 800-F-16-003).
https://www.epa.gov/sites/default/files/2016
/documents/drinkingwaterhealthadvisories_pfoa_pfos_updated_5.31.16.pdf. [Access online 21 October 2022].
Fahim, M., Ali Shah, A. ul H., & Bilal, S. (2019). Highly stable and efficient performance of binder-free symmetric
supercapacitor fabricated with electroactive polymer synthesized via interfacial polymerization. Materials, 12(10).
https://doi.org/10.3390/ma12101626
Faisal, M., Rashed, M. A., Abdullah, M. M., Harraz, F. A., Jalalah, M., & Al-Assiri, M. S. (2020). Efficient
hydrazine electrochemical sensor based on PANI doped mesoporous SrTiO3 nanocomposite modified glassy
carbon electrode. Journal of Electroanalytical Chemistry, 879. https://doi.org/10.1016/j.jelechem.2020.114805
perfluorinated
Faiz, F., Baxter, G., Collins, S., Sidiroglou, F., & Cran, M. (2020). Polyvinylidene fluoride coated optical fibre for
detecting
chemicals.
https://doi.org/10.1016/j.snb.2020.128006
Sensors
and
Actuators,
B:
Chemical,
Ferrari, A. G. M., Foster, C. W., Kelly, P. J., Brownson, D. A. C., & Banks, C. E. (2018). Determination of the
electrochemical area of screen-printed electrochemical sensing platforms. Biosensors, 8(2), 1–10.
https://doi.org/10.3390/bios8020053
Figiela, M., Wysokowski, M., Galinski, M., Jesionowski, T., & Stepniak, I. (2018). Synthesis and characterization
of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing. Sensors and Actuators, B:
Chemical, 272, 296–307. https://doi.org/10.1016/j.snb.2018.05.173
Geetha Devi, M., Shinoon Al-Hashmi, Z. S., & Chandra Sekhar, G. (2012). Treatment of vegetable oil mill effluent
using crab shell chitosan as adsorbent. International Journal of Environmental Science and Technology, 9(4),
–718. https://doi.org/10.1007/s13762-012-0100-4
Goswami, S., Nandy, S., Calmeiro, T. R., Igreja, R., Martins, R., & Fortunato, E. (2016). Stress Induced Mechano
electrical Writing-Reading of Polymer Film Powered by Contact Electrification Mechanism. Scientific Reports,
https://doi.org/10.1038/srep19514
Huang, B. H., Li, S. Y., Chiou, Y. J., Chojniak, D., Chou, S. C., Wong, V. C. M., Chen, S. Y., & Wu, P. W. (2021).
Electrophoretic fabrication of a robust chitosan/polyethylene glycol/polydopamine composite film for UV
shielding application. Carbohydrate Polymers, 273, 118560. https://doi.org/10.1016/j.carbpol.2021.118560
Karthik, R., & Meenakshi, S. (2015). Adsorption study on removal of Cr(VI) ions by polyaniline composite.
Desalination and Water Treatment, 54(11), 3083–3093. https://doi.org/10.1080/19443994.2014.909330
Mittal, H., Ray, S. S., Kaith, B. S., Bhatia, J. K., Sukriti, Sharma, J., & Alhassan, S. M. (2018). Recent progress
in the structural modification of chitosan for applications in diversified biomedical fields. European Polymer
Journal, 109, 402–434. https://doi.org/10.1016/j.eurpolymj.2018.10.013
Mohd Norsham, I. N., Baharin, S. N. A., Raoov, M., Shahabuddin, S., Jakmunee, J., & Sambasevam, K. P. (2020).
Optimization of waste quail eggshells as biocomposites for polyaniline in ammonia gas detection. Polymer
Engineering and Science, 60(12), 3170–3182. https://doi.org/10.1002/pen.25545
Mostafaei, A., & Zolriasatein, A. (2012). Synthesis and characterization of conducting polyaniline
nanocomposites containing ZnO nanorods. Progress in Natural Science: Materials International, 22(4), 273–280.
https://doi.org/10.1016/j.pnsc.2012.07.002
Nontipichet, N., Khumngern, S., Choosang, J., Thavarungkul, P., Kanatharana, P., & Numnuam, A. (2021). An
enzymatic histamine biosensor based on a screen-printed carbon electrode modified with a chitosan–gold
nanoparticles composite cryogel on Prussian blue-coated multi-walled carbon nanotubes. Food Chemistry, 364,
https://doi.org/10.1016/j.foodchem.2021.130396
Núñez, C., Triviño, J. J., & Arancibia, V. (2021). A electrochemical biosensor for As(III) detection based on the
catalytic activity of Alcaligenes faecalis immobilized on a gold nanoparticle–modified screen–printed carbon
electrode. Talanta, 223, 121702 . https://doi.org/10.1016/j.talanta.2020.121702
Ordonez, D., Valencia, A., Sadmani, A. H. M. A., & Chang, N. Bin. (2022). Green sorption media for the removal
of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) from water. Science of the Total
Environment, 819, 152886. https://doi.org/10.1016/j.scitotenv.2021.152886
Padmalaya, G., Vardhan, K. H., Kumar, P. S., Ali, M. A., & Chen, T. W. (2022). A disposable modified screen
printed electrode using egg white/ZnO rice structured composite as practical tool electrochemical sensor for
formaldehyde detection and its comparative electrochemical study with Chitosan/ZnO nanocomposite.
Chemosphere, 288(P2), 132560. https://doi.org/10.1016/j.chemosphere.2021.132560
Priyanka, S. R., & Latha, K. P. (2021). MnCr2O4 nanocomposite modified carbon paste electrode based
electrochemical sensor for determination of Norepinephrine: A cyclic voltammetry study. Chemical Data
Collections, 35, 100769. https://doi.org/10.1016/j.cdc.2021.100769
Rajeev, K. K., Kim, E., Nam, J., Lee, S., Mun, J., & Kim, T. H. (2020). Chitosan-grafted-polyaniline copolymer
as an electrically conductive and mechanilly stable binder for high-performance Si anodes in caLi-ion batteries.
Electrochimica Acta, 333. https://doi.org/10.1016/j.electacta.2019.135532
Ranaweera, R., Ghafari, C., & Luo, L. (2019). Bubble-Nucleation-Based Method for the Selective and Sensitive
Electrochemical Detection of Surfactants [Research-article]. Analytical Chemistry, 91(12), 7744–7748.
https://doi.org/10.1021/acs.analchem.9b01060
PFASs.
Ryu, H., Li, B., De Guise, S., McCutcheon, J., & Lei, Y. (2021). Recent progress in the detection of emerging
contaminants
Journal
https://doi.org/10.1016/j.jhazmat.2020.124437
of
Hazardous
Materials,
,
Sahnoun, S., & Boutahala, M. (2018). Adsorption removal of tartrazine by chitosan/polyaniline composite:
Kinetics and equilibrium studies. International Journal of Biological Macromolecules, 114, 1345–1353.
https://doi.org/10.1016/j.ijbiomac.2018.02.146
Shankar, A., Xiao, J., & Ducatman, A. (2012). Perfluorooctanoic acid and cardiovascular disease in US adults.
Archives of Internal Medicine, 172(18), 1397–1403. https://doi.org/10.1001/archinternmed.2012.3393
Suhail, M. H., Abdullah, O. G., & Kadhim, G. A. (2019). Hydrogen sulfide sensors based on PANI/f-SWCNT
polymer nanocomposite thin films prepared by electrochemical polymerization. Journal of Science: Advanced
Materials and Devices, 4(1), 143–149. https://doi.org/10.1016/j.jsamd.2018.11.006
Sznajder-Katarzyńska, K., Surma, M., & Cieślik, I. (2019). A Review of Perfluoroalkyl Acids (PFAAs) in terms
of Sources, Applications, Human Exposure, Dietary Intake, Toxicity, Legal Regulation, and Methods of
Determination. Journal of Chemistry, 2019. https://doi.org/10.1155/2019/2717528
Thamilarasan, V., Sethuraman, V., Gopinath, K., Balalakshmi, C., Govindarajan, M., Mothana, R. A., Siddiqui, N.
A., Khaled, J. M., & Benelli, G. (2018). Single Step Fabrication of Chitosan Nanocrystals Using Penaeus
semisulcatus: Potential as New Insecticides, Antimicrobials and Plant Growth Promoters. Journal of Cluster
Science, 29(2), 375–384. https://doi.org/10.1007/s10876-018-1342-1
Waikar, M. R., Rasal, A. S., Shinde, N. S., Dhas, S. D., Moholkar, A. V., Shirsat, M. D., Chakarvarti, S. K., &
Sonkawade, R. G. (2020). Electrochemical performance of Polyaniline based symmetrical energy storage device.
Materials Science in Semiconductor Processing, 120, 105291. https://doi.org/10.1016/j.mssp.2020.105291
Younis, S. A., Ali, T. A., & Serp, P. (2021). Potential applicability of Zn0.05TiOxNy@MOF-5 nanocomposite for
adsorption and electrochemical detection of Zn(II) in saline wastewater. Journal of Environmental Chemical
Engineering, 9(5), 106186. https://doi.org/10.1016/j.jece.2021.106186
Zheng, Z., Yu, H., Geng, W. C., Hu, X. Y., Wang, Y. Y., Li, Z., Wang, Y., & Guo, D. S. (2019).
Guanidinocalix[5]arene for sensitive fluorescence detection and magnetic removal of perfluorinated pollutants.
Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-019-13775-1
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Academia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.