A PRELIMINARY INVESTIGATION OF POLYANILINE/CHITOSAN COMPOSITE’S PHYSICOCHEMICAL PROPERTIES AND POTENTIAL ELECTROCHEMICAL APPLICATION

Authors

  • Nur Farahin Suhaimi Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • Siti Nor Atika Baharin Advanced Materials for Environmental Remediation (AMER), Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Negeri Sembilan, Malaysia
  • Nurul Ain Jamion Advanced Materials for Environmental Remediation (AMER), Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Negeri Sembilan, Malaysia
  • Kavirajaa Pandian Sambasevam Advanced Materials for Environmental Remediation (AMER), Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Negeri Sembilan, Malaysia

Keywords:

Polyaniline, Chitosan, Perfluorooctanoic acid, Screen-Printed Carbon Electrode, Electrochemical Sensor

Abstract

A polyaniline/chitosan (PANI/CHT) modified SPCE based sensor was developed and validated by
electrochemical detection of PFOA. The PANI/CHT composite was synthesized by chemical oxidative
polymerization technique. The synthesized material was characterized by scanning electron microscope
(SEM)-Energy dispersive X-ray spectroscopy (EDX), Thermal gravimetric analysis (TGA) and
Ultraviolet visible Spectroscopy (UV-Vis) techniques. Therefore, from the SEM result showed that the
combination of both materials give porous morphology which would further enhance the
electrochemical activity of PANI-CHT composite against PFOA. From the TGA analysis also revealed
that the addition of CHT to the PANI would increase the thermal stability of the composite compared
to the PANI. In addition, the redox properties of the modified SPCE were examined by cyclic
voltammetry studies. The investigation showed that PANI/CHT SPCE exhibit high electroactive surface
area compared to unmodified SPCE. The PANI/CHT SPCE recorded lowest detection limit (LOD) of
1.60 ppb with LOQ of 4.82 ppb, in the linear range of 25-50 ppb.

References

Ahrens, L., & Bundschuh, M. (2014). Fate and effects of poly- and perfluoroalkyl substances in the aquatic

environment:

A review. Environmental Toxicology and Chemistry, 33(9), 1921–1929.

https://doi.org/10.1002/etc.2663

Anisimov, Y. A., Cree, D. E., & Wilson, L. D. (2020). Preparation of Multicomponent Biocomposites and

Characterization of Their Physicochemical and Mechanical Properties. Journal of Composites Science, 4(1), 18.

https://doi.org/10.3390/jcs4010018

Agency for Toxic Substances and Disease Registry (Atsdr) (2004). Chlordane Chapter 2 . Health Effects. 21–449.

https://www.atsdr.cdc.gov/toxprofiles/tp31.pdf. [Access online 21 October 2022].

Cabuk, M., Yavuz, M., & Unal, H. I. (2014). Electrokinetic properties of biodegradable conducting polyaniline

graft-chitosan copolymer in aqueous and non-aqueous media. Colloids and Surfaces A: Physicochemical and

Engineering Aspects, 460, 494–501. https://doi.org/10.1016/j.colsurfa.2014.02.053

Che, B., Li, H., Zhou, D., Zhang, Y., Zeng, Z., Zhao, C., He, C., Liu, E., & Lu, X. (2019). Porous

polyaniline/carbon nanotube composite electrode for supercapacitors with outstanding rate capability and cyclic

stability. Composites Part B: Engineering, 165, 671–678. https://doi.org/10.1016/j.compositesb.2019.02.026

Chen, L. D., Lai, C. Z., Granda, L. P., Fierke, M. A., Mandal, D., Stein, A., Gladysz, J. A., & Bühlmann, P. (2013).

Fluorous membrane ion-selective electrodes for perfluorinated surfactants: Trace-level detection and in situ

monitoring of adsorption. Analytical Chemistry, 85(15), 7471–7477. https://doi.org/10.1021/ac401424j

Journal

Cordner, A., De La Rosa, V. Y., Schaider, L. A., Rudel, R. A., Richter, L., & Brown, P. (2019). Guideline levels

for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social

factors.

of

Exposure

Science

https://doi.org/10.1038/s41370-018-0099-9

Recent

and Environmental Epidemiology, 29(2), 157–171.

Dewitt, J. C., Peden-Adams, M. M., Keller, J. M., & Germolec, D. R. (2012). Immunotoxicity of Perfluorinated

Compounds:

Developments.

https://doi.org/10.1177/0192623311428473

Toxicologic

Pathology,

(2),

–311.

Dhivya, C., Vandarkuzhali, S. A. A., & Radha, N. (2019). Antimicrobial activities of nanostructured polyanilines

doped with aromatic nitro compounds. Arabian Journal of Chemistry, 12(8), 3785–3798.

https://doi.org/10.1016/j.arabjc.2015.12.005

EPA, (U.S. (2016). Drinking Water Health Advisories for PFOA and PFOS (Issue EPA 800-F-16-003).

https://www.epa.gov/sites/default/files/2016

/documents/drinkingwaterhealthadvisories_pfoa_pfos_updated_5.31.16.pdf. [Access online 21 October 2022].

Fahim, M., Ali Shah, A. ul H., & Bilal, S. (2019). Highly stable and efficient performance of binder-free symmetric

supercapacitor fabricated with electroactive polymer synthesized via interfacial polymerization. Materials, 12(10).

https://doi.org/10.3390/ma12101626

Faisal, M., Rashed, M. A., Abdullah, M. M., Harraz, F. A., Jalalah, M., & Al-Assiri, M. S. (2020). Efficient

hydrazine electrochemical sensor based on PANI doped mesoporous SrTiO3 nanocomposite modified glassy

carbon electrode. Journal of Electroanalytical Chemistry, 879. https://doi.org/10.1016/j.jelechem.2020.114805

perfluorinated

Faiz, F., Baxter, G., Collins, S., Sidiroglou, F., & Cran, M. (2020). Polyvinylidene fluoride coated optical fibre for

detecting

chemicals.

https://doi.org/10.1016/j.snb.2020.128006

Sensors

and

Actuators,

B:

Chemical,

Ferrari, A. G. M., Foster, C. W., Kelly, P. J., Brownson, D. A. C., & Banks, C. E. (2018). Determination of the

electrochemical area of screen-printed electrochemical sensing platforms. Biosensors, 8(2), 1–10.

https://doi.org/10.3390/bios8020053

Figiela, M., Wysokowski, M., Galinski, M., Jesionowski, T., & Stepniak, I. (2018). Synthesis and characterization

of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing. Sensors and Actuators, B:

Chemical, 272, 296–307. https://doi.org/10.1016/j.snb.2018.05.173

Geetha Devi, M., Shinoon Al-Hashmi, Z. S., & Chandra Sekhar, G. (2012). Treatment of vegetable oil mill effluent

using crab shell chitosan as adsorbent. International Journal of Environmental Science and Technology, 9(4),

–718. https://doi.org/10.1007/s13762-012-0100-4

Goswami, S., Nandy, S., Calmeiro, T. R., Igreja, R., Martins, R., & Fortunato, E. (2016). Stress Induced Mechano

electrical Writing-Reading of Polymer Film Powered by Contact Electrification Mechanism. Scientific Reports,

https://doi.org/10.1038/srep19514

Huang, B. H., Li, S. Y., Chiou, Y. J., Chojniak, D., Chou, S. C., Wong, V. C. M., Chen, S. Y., & Wu, P. W. (2021).

Electrophoretic fabrication of a robust chitosan/polyethylene glycol/polydopamine composite film for UV

shielding application. Carbohydrate Polymers, 273, 118560. https://doi.org/10.1016/j.carbpol.2021.118560

Karthik, R., & Meenakshi, S. (2015). Adsorption study on removal of Cr(VI) ions by polyaniline composite.

Desalination and Water Treatment, 54(11), 3083–3093. https://doi.org/10.1080/19443994.2014.909330

Mittal, H., Ray, S. S., Kaith, B. S., Bhatia, J. K., Sukriti, Sharma, J., & Alhassan, S. M. (2018). Recent progress

in the structural modification of chitosan for applications in diversified biomedical fields. European Polymer

Journal, 109, 402–434. https://doi.org/10.1016/j.eurpolymj.2018.10.013

Mohd Norsham, I. N., Baharin, S. N. A., Raoov, M., Shahabuddin, S., Jakmunee, J., & Sambasevam, K. P. (2020).

Optimization of waste quail eggshells as biocomposites for polyaniline in ammonia gas detection. Polymer

Engineering and Science, 60(12), 3170–3182. https://doi.org/10.1002/pen.25545

Mostafaei, A., & Zolriasatein, A. (2012). Synthesis and characterization of conducting polyaniline

nanocomposites containing ZnO nanorods. Progress in Natural Science: Materials International, 22(4), 273–280.

https://doi.org/10.1016/j.pnsc.2012.07.002

Nontipichet, N., Khumngern, S., Choosang, J., Thavarungkul, P., Kanatharana, P., & Numnuam, A. (2021). An

enzymatic histamine biosensor based on a screen-printed carbon electrode modified with a chitosan–gold

nanoparticles composite cryogel on Prussian blue-coated multi-walled carbon nanotubes. Food Chemistry, 364,

https://doi.org/10.1016/j.foodchem.2021.130396

Núñez, C., Triviño, J. J., & Arancibia, V. (2021). A electrochemical biosensor for As(III) detection based on the

catalytic activity of Alcaligenes faecalis immobilized on a gold nanoparticle–modified screen–printed carbon

electrode. Talanta, 223, 121702 . https://doi.org/10.1016/j.talanta.2020.121702

Ordonez, D., Valencia, A., Sadmani, A. H. M. A., & Chang, N. Bin. (2022). Green sorption media for the removal

of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) from water. Science of the Total

Environment, 819, 152886. https://doi.org/10.1016/j.scitotenv.2021.152886

Padmalaya, G., Vardhan, K. H., Kumar, P. S., Ali, M. A., & Chen, T. W. (2022). A disposable modified screen

printed electrode using egg white/ZnO rice structured composite as practical tool electrochemical sensor for

formaldehyde detection and its comparative electrochemical study with Chitosan/ZnO nanocomposite.

Chemosphere, 288(P2), 132560. https://doi.org/10.1016/j.chemosphere.2021.132560

Priyanka, S. R., & Latha, K. P. (2021). MnCr2O4 nanocomposite modified carbon paste electrode based

electrochemical sensor for determination of Norepinephrine: A cyclic voltammetry study. Chemical Data

Collections, 35, 100769. https://doi.org/10.1016/j.cdc.2021.100769

Rajeev, K. K., Kim, E., Nam, J., Lee, S., Mun, J., & Kim, T. H. (2020). Chitosan-grafted-polyaniline copolymer

as an electrically conductive and mechanilly stable binder for high-performance Si anodes in caLi-ion batteries.

Electrochimica Acta, 333. https://doi.org/10.1016/j.electacta.2019.135532

Ranaweera, R., Ghafari, C., & Luo, L. (2019). Bubble-Nucleation-Based Method for the Selective and Sensitive

Electrochemical Detection of Surfactants [Research-article]. Analytical Chemistry, 91(12), 7744–7748.

https://doi.org/10.1021/acs.analchem.9b01060

PFASs.

Ryu, H., Li, B., De Guise, S., McCutcheon, J., & Lei, Y. (2021). Recent progress in the detection of emerging

contaminants

Journal

https://doi.org/10.1016/j.jhazmat.2020.124437

of

Hazardous

Materials,

,

Sahnoun, S., & Boutahala, M. (2018). Adsorption removal of tartrazine by chitosan/polyaniline composite:

Kinetics and equilibrium studies. International Journal of Biological Macromolecules, 114, 1345–1353.

https://doi.org/10.1016/j.ijbiomac.2018.02.146

Shankar, A., Xiao, J., & Ducatman, A. (2012). Perfluorooctanoic acid and cardiovascular disease in US adults.

Archives of Internal Medicine, 172(18), 1397–1403. https://doi.org/10.1001/archinternmed.2012.3393

Suhail, M. H., Abdullah, O. G., & Kadhim, G. A. (2019). Hydrogen sulfide sensors based on PANI/f-SWCNT

polymer nanocomposite thin films prepared by electrochemical polymerization. Journal of Science: Advanced

Materials and Devices, 4(1), 143–149. https://doi.org/10.1016/j.jsamd.2018.11.006

Sznajder-Katarzyńska, K., Surma, M., & Cieślik, I. (2019). A Review of Perfluoroalkyl Acids (PFAAs) in terms

of Sources, Applications, Human Exposure, Dietary Intake, Toxicity, Legal Regulation, and Methods of

Determination. Journal of Chemistry, 2019. https://doi.org/10.1155/2019/2717528

Thamilarasan, V., Sethuraman, V., Gopinath, K., Balalakshmi, C., Govindarajan, M., Mothana, R. A., Siddiqui, N.

A., Khaled, J. M., & Benelli, G. (2018). Single Step Fabrication of Chitosan Nanocrystals Using Penaeus

semisulcatus: Potential as New Insecticides, Antimicrobials and Plant Growth Promoters. Journal of Cluster

Science, 29(2), 375–384. https://doi.org/10.1007/s10876-018-1342-1

Waikar, M. R., Rasal, A. S., Shinde, N. S., Dhas, S. D., Moholkar, A. V., Shirsat, M. D., Chakarvarti, S. K., &

Sonkawade, R. G. (2020). Electrochemical performance of Polyaniline based symmetrical energy storage device.

Materials Science in Semiconductor Processing, 120, 105291. https://doi.org/10.1016/j.mssp.2020.105291

Younis, S. A., Ali, T. A., & Serp, P. (2021). Potential applicability of Zn0.05TiOxNy@MOF-5 nanocomposite for

adsorption and electrochemical detection of Zn(II) in saline wastewater. Journal of Environmental Chemical

Engineering, 9(5), 106186. https://doi.org/10.1016/j.jece.2021.106186

Zheng, Z., Yu, H., Geng, W. C., Hu, X. Y., Wang, Y. Y., Li, Z., Wang, Y., & Guo, D. S. (2019).

Guanidinocalix[5]arene for sensitive fluorescence detection and magnetic removal of perfluorinated pollutants.

Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-019-13775-1

Downloads

Published

2022-10-31

Most read articles by the same author(s)