CHARACTERISTIC OF PRASEODYMIUM OXIDE DOPED MANGANESE/RUTHENIUM CATALYST IN METHANATION: EFFECT CALCINATION TEMPERATURE

Authors

  • Salmiah Jamal Mat Rosid Unisza Science and Medicine Foundation Centre, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu, Malaysia
  • Susilawati Toemen Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
  • Wan Azelee Wan Abu Bakar Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
  • Sarina Mat Rosid Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
  • Wan Nazwanie Wan Abdullah School of Chemical Science, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
  • Siti Maisarah Aziz Unisza Science and Medicine Foundation Centre, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu, Malaysia

Keywords:

calcination temperature, methanation, morphology, praseodymium

Abstract

Lanthanide element in the methanation reaction gives an excellent catalytic performance at low reaction temperature. Praseodymium is one of lanthanide element and was chosen due to its properties which are thermally stable and provide excess of oxygen in the oxide lattice. Therefore, a catalyst of Ru/Mn/Pr (5:30:65)/Al2O3 (RMP, 5:30:65/Al2O3) was prepared via wetness impregnation method and the effect of calcination temperature on the catalyst performance was investigated using FTIR analysis. The RMP/Al2O3 catalyst calcined at 800 o C was chosen as an excel catalyst with CO2 conversion of 96.9% and CH4 formation of 45.1% at 350 o C reaction temperature. From the EDX mapping, it can be observed that the distribution of all element is homogeneous at 800 o C and 900 o C except Ru, O and Al at 1000 o C calcination temperature. The image from FESEM also shows the presence of some crystal shape on the catalyst surface. From the FTIR analysis, the peak stretching and bending mode of O-H bond decreased when the calcination temperature increased.

References

Abdullah, W. R., Zakaria, A., & Ghazali, M. S. (2012). Synthesis mechanism of low-voltage praseodymium oxide doped zinc oxide varistor ceramics prepared through modified citrate gel coating. International journal of molecular sciences, 13(4), 5278–5289. https://doi.org/10.3390/ijms13045278

Anderson, J. S., & Gallagher, K. J. (1963). 9. The oxidation of praseodymium oxide. Part I. Chemisorption on praseodymium oxide. Journal of the Chemical Society, 52-61. https://doi.org/10.1039/JR9630000052

Iqbal, M. M. A., Toemen, S., Razak, F. I. A., Rosid, S. J. M., & Azelee, N. I. W. (2020). Catalytic methanation over nanoparticle heterostructure of Ru/Fe/Ce/g-Al2O3 catalyst: Performance and characterization. Renewable Energy, 162, 513-524, https://doi.org/10.1016/j.renene.2020.06.093

Bakar, W. A. W. A., Ali, R., Kadir, A. A. A., Rosid, S. J. M., & Mohammad, N. S. (2012). Catalytic methanation reaction over alumina supported cobalt oxide doped noble metal oxides for the purification of simulated natural gas. Journal of Fuel Chemistry and Technology, 40(7) 822-830. https://doi.org/10.1016/S1872-5813(12)60031-0

Branco, J. B., da Silva, R. P. & Ferreira, A. C. (2020). Methanation of CO2 over Cobalt-Lanthanide Aerogels: Effect of Calcination Temperature. Catalysts, 10, 704. https://doi.org/10.3390/catal10060704

Coates, J. P. (1998). A review of sampling methods for infrared spectroscopy. In Applied Spectroscopy: a compact reference for practitioners eds. J. Workman, A.W. Sprinsteem, Academic Press, New York. pp 49-91.

Ferro, S. (2011). Physicochemical and Electrical Properties of Praseodymium Oxides, International Journal of Electrochemistry, 1-7, https://doi.org/10.4061/2011/561204

Md Ali, S. A., Hamid, K. H. K., & Ismail, K. N. (2017). Effect of calcination temperature on the structure and catalytic performance of 80Ni20CO/SiO2 catalyst for CO2 methanation. AIP Conference Proceedings, 1885, 020272. https://doi.org/10.1063/1.5002466

Parathasarathi, B., Rajamathi, M., Hedge, M. S., & Kamath, P.V. (2000). Thermal behavior of hydroxides, hydroxysalt and hydrotalcites. Bulletin of Materials Science, 23(2). 141-145. https://doi.org/10.1007/BF02706556

Rahemi, N., Haghighi, M., Babaluo, A.A., Jafari, M.F., & Khorram, S. (2013). Non-thermal plasma assisted synthesis and physicochemical characterizations of Co and Cu doped Ni/Al2O3 nanocatalysts used for dry reforming of methane, International Journal of Hydrogen Energy. 38(36) 16048-16061. https://doi.org/10.1016/j.ijhydene.2013.08.084

Rosid, S.J.M., Toemen, S., Bakar, W.AW.A., Zamani, A.H., & Mokhtar, W.N.A.W. (2019). Physicochemical characteristic of neodymium oxide-based catalyst for in-situ CO2/H2 methanation reaction, Journal of Saudi Chemical Society, 23(3), 284-293. http://doi.org/10.1016/j.jscs.2018.08.002.

Rosid, S.J.M., Bakar, W.A.W.A., & Ali, R. (2017). Optimization by Box-Behnken design of in-situ carbon dioxide conversion using lanthanum oxide. Malaysian Journal of Analytical Sciences. 21(4). 880-888. http://doi.org/10.17576/mjas-2017-2104-14

Rostrup-Niclsen, J.R., Pedersen, K., & Sehested, J. (2007). High temperature methanation sintering and structure sensitivity. Applied Catalysis A: General, 330. 134-138. https://doi.org/10.1016/j.apcata.2007.07.015

Savva, P., Goundani, K., Vakros, J., Bourikas, K., Founzoula, C., Vattis, D., Lycourgthiotis, A., & Kordulis, C. (2008). Benzene hydrogenation over Ni/Al2O3 catlyst prepared by conventional and sol-gel techniques. Applied Catalysis B: Environmental. 79(3). 199-207. https://doi.org/10.1016/j.apcatb.2007.10.023

Schmitz, P. J., Usmen, R. K., Peters, C. R., Graham, G. W., & McCabe, R. W. (1993). Effect of calcination temperature on Al2O3-supported CeO2: Complementary from XRD and XPS. Applied Surface Science. 72. 181-187. https://doi.org/10.1016/0169-4332(93)90010-9

Sehested, J. (2003). Sintering of steam reforming catalysts. Journal of Catalysis. 217(2). 417-426. https://doi.org/10.1016/S0021-9517(03)00075-7

Wu, H., Zou, M., Guo, L., Ma, F., Mo, W., Yu, Y., Mian, I., Liu, J., Yin, S., & Tsubaki, N. (2020). Effects of calcination temperatures on the structure–activity relationship of Ni–La/Al2O3 catalysts for syngas methanation. RSC Advances, 10, 4166–4174. https://doi.org/10.1039/c9ra09674d

Zamani, A. H., Shohaimi, N. A. M., Rosid, S. J. M., Abdullah, N. H., & Shukri, N. M. (2019). Enhanced low temperature reaction for the CO2 methanation over Ru promoted Cu/Mn on alumina support catalyst using double reactor system. Journal of the Taiwan Institute of Chemical Engineers., 6. 400-408. https://doi.org/10.1016/j.jtice.2018.12.009

Downloads

Published

2021-04-30

Issue

Section

Archives

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.