SIR FRACTIONAL ORDER OF COVID-19 BY ADAMS BASHFORTH-MOULTON METHOD
DOI:
https://doi.org/10.24191/mjoc.v9i1.24439Keywords:
SIR, Caputo Fractional Derivative, Covid-19, Adams Bashforth Moulton, Disease stabilityAbstract
This study addresses a research gap by introducing fractional order derivatives into the SIR model for tracking COVID-19 in Malaysia. The Caputo sense fractional derivative and thae Adams Bashforth Moulton method are employed to analyse the COVID-19 behavior and stability. By manipulating fractional order derivative values, this study investigates their impact on key SIR parameters, observing that lower values accelerate the attainment of asymptotic behavior in populations. The stability analysis reveals two equilibrium points: an unstable disease-free equilibrium and a stable endemic equilibrium within the system. This pioneering exploration of fractional order derivatives in the context of Malaysia's COVID-19 modeling contributes valuable insights, enhancing our understanding the behavior of the disease.
References
Akindeinde, S. O., Okyere, E., Adewumi, A. O., Lebelo, R. S., Fabelurin, O. O., & Moore, S. E. (2022). Caputo fractional-order SEIRP model for COVID-19 Pandemic. Alexandria Engineering Journal, 61(1), 829-845. from https://doi.org/10.1016/j.aej.2021.04.097
Albrecht, T., Almond, J. W., Alfa, M. J., Alton, G. G. et al. (1996). Medical Microbiology [4th edition]. The University of Texas Medical Branch at Galveston.https://www.ncbi.nlm.nih.gov/books/NBK7782/
Atangana, A. (2018). Chapter 5 - Fractional Operators and Their Applications. Fractional Operators with Constant and Variable Order with Application toGeo-Hydrology, 79-112. https://doi.org/10.1016/B978-0-12-809670-3.00005-9
Britannica, T. Editors of Encyclopaedia (2021, December 13). coronavirus. Encyclopaedia Britannica. https://www.britannica.com/science/coronavirus-virus-group
Brunner, H. (2017). References. In Volterra Integral Equations: An Introduction to Theory and Applications (Cambridge Monographs on Applied and Computational Mathematics, pp. 344-382). Cambridge: Cambridge University Press. https://doi:10.1017/9781316162491.012
Caputo, M. (1967). Linear Models of Dissipation whose Q is almost Frequency Independent— II. Geophysical Journal International, 13(5), 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
Diethelm, K., Ford, N. J., & Freed, A. D. (2002). A Predictor Corrector Approach for the Numerical Solution of Fractional Differential Equations. Nonlinear Dynamics, 29(2002), 3-22. https://doi.org/10.1023/A:1016592219341
Diethelm, K., Ford, N. J., & Freed, A. D. (2004). Detailed Error Analysis for a Fractional Adams Method. Numerical Algorithms, 36(2004), 31-52. https://doi.org/10.1023/B:NUMA.0000027736.85078.be
Mohd Idris, N. A., Mohtar, S. K., Md Ali, Z., & Abdul Hamid, K. (2022). A dynamic SIR model for the spread of novel coronavirus disease 2019 (COVID 19) in Malaysia. Malaysian Journal of Computing (MJoC), 7(2), 1108-1119. https://doi.org/10.24191/mjoc.v7i2
Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D., & Mbogo, R. (2020). SEIR model for COVID-19 dynamics incorporating the environment and social distancing. BMC Res Notes 13, 352. https://doi.org/10.1186/s13104-020-05192
Nabi, K. N., Abboubakar, H., & Kumar, P. (2020). Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives. Chaos, Solitons & Fractals, 141(2020), 110283. https://doi.org/10.1016/j.chaos.2020.110283
Tuan, N., H., Mohammadi, H., & Rezapour, S. (2020). A mathematical model for COVID-19 transmission by using Caputo fractional derivative. Chaos, Solitons & Fractals, 140, 110107. https://doi.org/10.1016/j.chaos.2020.110107
Wong, W. K., Juwono, F. H., & Chua, T. H. (2021). SIR Simulation of COVID-19 Pandemic in Malaysia: Will the Vaccination Program be Effective? Physics and Society; Populations and Evolution. Retrieved January 9, 2021, from https://arxiv.org/abs/2101.07494
Woolf, P., et al. (2021, December 4). Using Eigenvalues and Eigenvectors to Find Stability and Solve ODEs. University of Michigan. Retrieved January 9, 2021, from https://eng.libretexts.org/@go/page/22502
World Health Organization. (2020). Coronavirus. Retrieved January 9, 2021 https://www.who.int/health-topics/coronavirus#tab=tab_1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Zubaidah Sadikin, Zaileha Md Ali, Fatin Nadira Rusly, Nuramira Husna Abu Hassan, Siti Rahimah Batcha, Noratika Nordin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




