SIR FRACTIONAL ORDER OF COVID-19 BY ADAMS BASHFORTH-MOULTON METHOD

Authors

  • Zubaidah Sadikin College of Computing Informatics and Mathematics, Universiti Teknologi MARA, Selangor, Malaysia.
  • Zaileha Md Ali College of Computing Informatics and Mathematics, Universiti Teknologi MARA, Selangor, Malaysia.
  • Fatin Nadira Rusly College of Computing Informatics and Mathematics, Universiti Teknologi MARA, Selangor, Malaysia.
  • Nuramira Husna Abu Hassan College of Computing Informatics and Mathematics, Universiti Teknologi MARA, Selangor, Malaysia.
  • Siti Rahimah Batcha College of Computing Informatics and Mathematics, Universiti Teknologi MARA, Selangor, Malaysia.
  • Noratika Nordin College of Computing Informatics and Mathematics, Universiti Teknologi MARA, Selangor, Malaysia.

DOI:

https://doi.org/10.24191/mjoc.v9i1.24439

Keywords:

SIR, Caputo Fractional Derivative, Covid-19, Adams Bashforth Moulton, Disease stability

Abstract

This study addresses a research gap by introducing fractional order derivatives into the SIR model for tracking COVID-19 in Malaysia. The Caputo sense fractional derivative and thae Adams Bashforth Moulton method are employed to analyse the COVID-19 behavior and stability. By manipulating fractional order derivative values, this study investigates their impact on key SIR parameters, observing that lower values accelerate the attainment of asymptotic behavior in populations. The stability analysis reveals two equilibrium points: an unstable disease-free equilibrium and a stable endemic equilibrium within the system. This pioneering exploration of fractional order derivatives in the context of Malaysia's COVID-19 modeling contributes valuable insights, enhancing our understanding the behavior of the disease.

References

Akindeinde, S. O., Okyere, E., Adewumi, A. O., Lebelo, R. S., Fabelurin, O. O., & Moore, S. E. (2022). Caputo fractional-order SEIRP model for COVID-19 Pandemic. Alexandria Engineering Journal, 61(1), 829-845. from https://doi.org/10.1016/j.aej.2021.04.097

Albrecht, T., Almond, J. W., Alfa, M. J., Alton, G. G. et al. (1996). Medical Microbiology [4th edition]. The University of Texas Medical Branch at Galveston.https://www.ncbi.nlm.nih.gov/books/NBK7782/

Atangana, A. (2018). Chapter 5 - Fractional Operators and Their Applications. Fractional Operators with Constant and Variable Order with Application toGeo-Hydrology, 79-112. https://doi.org/10.1016/B978-0-12-809670-3.00005-9

Britannica, T. Editors of Encyclopaedia (2021, December 13). coronavirus. Encyclopaedia Britannica. https://www.britannica.com/science/coronavirus-virus-group

Brunner, H. (2017). References. In Volterra Integral Equations: An Introduction to Theory and Applications (Cambridge Monographs on Applied and Computational Mathematics, pp. 344-382). Cambridge: Cambridge University Press. https://doi:10.1017/9781316162491.012

Caputo, M. (1967). Linear Models of Dissipation whose Q is almost Frequency Independent— II. Geophysical Journal International, 13(5), 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x

Diethelm, K., Ford, N. J., & Freed, A. D. (2002). A Predictor Corrector Approach for the Numerical Solution of Fractional Differential Equations. Nonlinear Dynamics, 29(2002), 3-22. https://doi.org/10.1023/A:1016592219341

Diethelm, K., Ford, N. J., & Freed, A. D. (2004). Detailed Error Analysis for a Fractional Adams Method. Numerical Algorithms, 36(2004), 31-52. https://doi.org/10.1023/B:NUMA.0000027736.85078.be

Mohd Idris, N. A., Mohtar, S. K., Md Ali, Z., & Abdul Hamid, K. (2022). A dynamic SIR model for the spread of novel coronavirus disease 2019 (COVID 19) in Malaysia. Malaysian Journal of Computing (MJoC), 7(2), 1108-1119. https://doi.org/10.24191/mjoc.v7i2

Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D., & Mbogo, R. (2020). SEIR model for COVID-19 dynamics incorporating the environment and social distancing. BMC Res Notes 13, 352. https://doi.org/10.1186/s13104-020-05192

Nabi, K. N., Abboubakar, H., & Kumar, P. (2020). Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives. Chaos, Solitons & Fractals, 141(2020), 110283. https://doi.org/10.1016/j.chaos.2020.110283

Tuan, N., H., Mohammadi, H., & Rezapour, S. (2020). A mathematical model for COVID-19 transmission by using Caputo fractional derivative. Chaos, Solitons & Fractals, 140, 110107. https://doi.org/10.1016/j.chaos.2020.110107

Wong, W. K., Juwono, F. H., & Chua, T. H. (2021). SIR Simulation of COVID-19 Pandemic in Malaysia: Will the Vaccination Program be Effective? Physics and Society; Populations and Evolution. Retrieved January 9, 2021, from https://arxiv.org/abs/2101.07494

Woolf, P., et al. (2021, December 4). Using Eigenvalues and Eigenvectors to Find Stability and Solve ODEs. University of Michigan. Retrieved January 9, 2021, from https://eng.libretexts.org/@go/page/22502

World Health Organization. (2020). Coronavirus. Retrieved January 9, 2021 https://www.who.int/health-topics/coronavirus#tab=tab_1

Downloads

Published

2024-04-01

How to Cite

Sadikin, Z. ., Md Ali, Z. ., Rusly, F. N. ., Abu Hassan, N. H. ., Batcha, S. R. ., & Nordin, N. (2024). SIR FRACTIONAL ORDER OF COVID-19 BY ADAMS BASHFORTH-MOULTON METHOD. Malaysian Journal of Computing, 9(1), 1690–1705. https://doi.org/10.24191/mjoc.v9i1.24439