ENHANCING LOAN APPROVAL DECISION-MAKING: AN INTERPRETABLE MACHINE LEARNING APPROACH USING LIGHTGBM FOR DIGITAL ECONOMY DEVELOPMENT
DOI:
https://doi.org/10.24191/mjoc.v9i1.25691Keywords:
Artificial Intelligence, Light Gradient Boosting Machine, Machine Learning, SHAPAbstract
This study aims to enhance loan approval decision-making in the digital economy using an interpretable machine learning approach. The primary research question investigates how integrating an interpretable machine learning approach can improve the accuracy and transparency of loan approval processes. We employed LightGBM, a gradient-boosting framework for loan approval classification, optimized via Random Search hyperparameter tuning and validated using 10-fold cross-validation. We incorporated the Shapley Additive exPlanations (SHAP) framework to address the challenge of interpretability in machine learning. The LightGBM model outperformed conventional algorithms (Decision Tree, Random Forest, AdaBoost, and Extra Trees) in accuracy (98.13%), precision (97.78%), recall (97.17%), and F1-score (97.48%). The study demonstrates that using an interpretable machine learning approach with LightGBM and SHAP can significantly improve the accuracy and transparency of loan approval decisions. This method offers a promising avenue for financial institutions to enhance their loan approval mechanisms, ensuring more reliable, efficient, and transparent decision-making in the digital economy. The study also underscores the importance of interpretability in deploying machine learning solutions in sectors with significant socio-economic impacts.
References
Alaradi, M., & Hilal, S. (2020). Tree-Based Methods for Loan Approval. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), 1–6. https://doi.org/10.1109/ICDABI51230.2020.9325614.
Berrar, D. (2019). Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology (pp. 542–545). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20349-X.
Brotcke, L. (2022). Time to Assess Bias in Machine Learning Models for Credit Decisions. Journal of Risk and Financial Management, 15(4), 165. https://doi.org/10.3390/jrfm15040165.
Cakiroglu, C., Demir, S., Hakan Ozdemir, M., Latif Aylak, B., Sariisik, G., & Abualigah, L. (2024). Data-driven interpretable ensemble learning methods for the prediction of wind turbine power incorporating SHAP analysis. Expert Systems with Applications, 237, 121464. https://doi.org/10.1016/j.eswa.2023.121464.
Dansana, D., Patro, S. G. K., Mishra, B. K., Prasad, V., Razak, A., & Wodajo, A. W. (2023). Analyzing the impact of loan features on bank loan prediction using the Random Forest algorithm. Engineering Reports. https://doi.org/10.1002/eng2.12707.
Hui, S. H., Khai, W. K., XinYing, C., & Wai, P. W. (2023). Prediction of customer churn for ABC Multistate Bank using machine learning algorithms. Malaysian Journal of Computing (MJoC), 8(2), 1602–1619.
Idroes, G. M., Noviandy, T. R., Maulana, A., Zahriah, Z., Suhendrayatna, S., Suhartono, E., Khairan, K., Kusumo, F., Helwani, Z., & Abd Rahman, S. (2023). Urban Air Quality Classification Using Machine Learning Approach to Enhance Environmental Monitoring. Leuser Journal of Environmental Studies, 1(2),62–68. https://doi.org/10.60084/ljes.v1i2.99.
Idroes, R., Noviandy, T. R., Maulana, A., Suhendra, R., Sasmita, N. R., Muslem, M., Idroes, G. M., Kemala, P., & Irvanizam, I. (2021). Application of Genetic Algorithm-Multiple Linear Regression and Artificial Neural Network Determinations for Prediction of Kovats Retention Index. International Review on Modelling and Simulations (IREMOS), 14(2), 137. https://doi.org/10.15866/iremos.v14i2.20460.
Kariv, D., & Coleman, S. (2015). Toward a theory of financial bricolage: the impact of small loans on new businesses. Journal of Small Business and Enterprise Development, 22(2), 196–224. https://doi.org/10.1108/JSBED-02-2013-0020.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30.
Lamichhane, B. D. (2022). Loan delinquency in microfinance institutions (MFIs): Ways to overcome the problem. Nepalese Journal of Management Research, 2(1), 37–43.
Le, T.-T.-H., Kim, H., Kang, H., & Kim, H. (2022). Classification and Explanation for Intrusion Detection System Based on Ensemble Trees and SHAP Method. Sensors, 22(3), 1154. https://doi.org/10.3390/s22031154.
Lee, L. C., & Jemain, A. A. (2019). Predictive modelling of colossal ATR-FTIR spectral data using PLS-DA: Empirical differences between PLS1-DA and PLS2-DA algorithms. Analyst, 144(8), 2670–2678. https://doi.org/10.1039/c8an02074d.
Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.
Makinde, H. O. (2016). Implications of commercial bank loans on economic growth in Nigeria (1986-2014). Journal of Emerging Trends in Economics and Management Sciences, 7(3), 124–136.
Mansur Huang, N. S., Ibrahim, Z., & Mat Diah, N. (2021). Machine learning techniques for early heart failure prediction. Malaysian Journal of Computing (MJoC), 6(2), 872–884.
Mantovani, R. G., Rossi, A. L. D., Vanschoren, J., Bischl, B., & De Carvalho, A. C. (2015). Effectiveness of random search in SVM hyper parameter tuning. 2015 International Joint Conference on Neural Networks (IJCNN), 1–8.
Marcílio, W. E., & Eler, D. M. (2020). From explanations to feature selection: assessing SHAP values as feature selection mechanism. 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 340–347.
Maulana, A., Faisal, F. R., Noviandy, T. R., Rizkia, T., Idroes, G. M., Tallei, T. E., El-Shazly, M., & Idroes, R. (2023). Machine Learning Approach for Diabetes Detection Using FineTuned XGBoost Algorithm. Infolitika Journal of Data Science, 1(1), 1–7. https://doi.org/10.60084/ijds.v1i1.72.
Musbah, H., Ali, G., Aly, H. H., & Little, T. A. (2022). Energy management using multi- criteriadecision making and machine learning classification algorithms for intelligent system.Electric Power Systems Research, 203, 107645. https://doi.org/10.1016/j.epsr.2021.107645.
Noviandy, T. R., Alfanshury, M. H., Abidin, T. F., & Riza, H. (2023a). Enhancing GliomaGrading Performance: A Comparative Study on Feature Selection Techniques and Ensemble Machine Learning. 2023 International Conference on Computer, Control, Informatics and Its Applications (IC3INA), 406 411. https://doi.org/10.1109/IC3INA60834.2023.1025778.
Noviandy, T. R., Idroes, G. M., Maulana, A., Hardi, I., Ringga, E. S., & Idroes, R. (2023b).Credit Card Fraud Detection for Contemporary Financial Management Using XGBoostDriven Machine Learning and Data Augmentation Techniques. Indatu Journal ofManagement and Accounting, 1(1), 29–35. https://doi.org/10.60084/ijma.v1i1.78.
Noviandy, T. R., Maulana, A., Emran, T. B., Idroes, G. M., & Idroes, R. (2023c). QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer’s Disease Using Ensemble Machine Learning Algorithms. Heca Journal of Applied Sciences, 1(1), 1–7. https://doi.org/10.60084/hjas.v1i1.12.
Noviandy, T. R., Maulana, A., Idroes, G. M., Emran, T. B., Tallei, T. E., Helwani, Z., & Idroes, R. (2023d). Ensemble Machine Learning Approach for Quantitative Structure Activity Relationship Based Drug Discovery: A Review. Infolitika Journal of Data Science, 1(1), 32–41. https://doi.org/10.60084/ijds.v1i1.91.
Noviandy, T. R., Maulana, A., Idroes, G. M., Irvanizam, I., Subianto, M., & Idroes, R. (2023e).QSAR-Based Stacked Ensemble Classifier for Hepatitis C NS5B Inhibitor Prediction. 2023 2nd International Conference on Computer System, Information Technology,and Electrical Engineering (COSITE), 220–225. https://doi.org/10.1109/COSITE60233.2023.1050039.
Noviandy, T. R., Maulana, A., Idroes, G. M., Maulydia, N. B., Patwekar, M., Suhendra, R., & Idroes, R. (2023f). Integrating GeneticAlgorithm and LightGBM for QSAR Modeling of Acetylcholinesterase Inhibitors in Alzheimer’sDisease Drug Discovery. Malacca Pharmaceutics, 1(2), 48–54. https://doi.org/10.60084/mp.v1i2.60.
Orji, U. E., Ugwuishiwu, C. H., Nguemaleu, J. C. N., & Ugwuanyi, P. N. (2022). Machine Learning Models for Predicting Bank Loan Eligibility. 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), 1–5. https://doi.org/10.1109/NIGERCON54645.2022.9803172.
Ponsam, J. G., Bella Gracia, S. V. J., Geetha, G., Karpaselvi, S., & Nimala, K. (2021). Credit Risk Analysis using LightGBM and a comparative study of popular algorithms. 2021 4th International Conference on Computing and Communications Technologies (ICCCT), 634–641. https://doi.org/10.1109/ICCCT53315.2021.9711896.
Purificato, E., Lorenzo, F., Fallucchi, F., & De Luca, E. W. (2023). The Use of Responsible Artificial Intelligence Techniques in the Context of Loan Approval Processes. International Journal of Human–Computer Interaction, 39(7), 1543–1562. https://doi.org/10.1080/10447318.2022.2081284.
Saiti, D., & Trenovski, B. (2022). The impact of loans and interest rates on economic growth in the Republic of North Macedonia. Knowledge-International Journal, 50(1), 15–20.
Sevgen, E., & Abdikan, S. (2023). Classification of Large-Scale Mobile Laser Scanning Data in Urban Area with LightGBM. Remote Sensing, 15(15), 3787. https://doi.org/10.3390/rs15153787.
Shafie, S., Soek, P. O., & Khai, W. K. (2023). Prediction of employee promotion using hybrid sampling method with machine learning architecture. Malaysian Journal of Computing (MJoC), 8(1), 1264–1286.
Sharma, A. (2023). Loan Approval Prediction. https://www.kaggle.com/datasets/architsharma01/loan-approval-prediction-dataset.
Sheikh, M. A., Goel, A. K., & Kumar, T. (2020). AnApproach for Prediction of Loan Approval using Machine Learning Algorithm. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), 490–494. https://doi.org/10.1109/ICESC48915.2020.915514.
Suhendra, R., Suryadi, S., Husdayanti, N., Maulana, A., & Rizky, T. (2023). Evaluation of Gradient Boosted Classifier in Atopic Dermatitis Severity Score Classification. Heca Journal of Applied Sciences, 1(2), 54–61. https://doi.org/10.60084/hjas.v1i2.85.
Supriatna, D. J. I., Saputra, H., & Hasan, K. (2023). Enhancing the Red Wine Quality Classification Using Ensemble Voting Classifiers. Infolitika Journal of Data Science, 1(2), 42–47. https://doi.org/10.60084/ijds.v1i2.95.
Tchakoute Tchuigoua, H. (2018). Which types of microfinance institutions decentralize theloan approval process? The Quarterly Review of Economics and Finance, 67, 237–244. https://doi.org/10.1016/j.qref.2017.07.002.
Wen, X., Xie, Y., Wu, L., & Jiang, L. (2021). Quantifying and comparing the effects of key risk factors on various types of roadway segment crashes with LightGBM and SHAP. Accident Analysis & Prevention, 159, 106261. https://doi.org/10.1016/j.aap.2021.106261.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Teuku Rizky Noviandy, Ghalieb Mutig Idroes, Irsan Hardi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




