PREDICTION OF DIABETIC RETINOPATHY AMONG DIABETIC NEUROPATHY IN T2DM PATIENTS USING DATA MINING ALGORITHM
DOI:
https://doi.org/10.24191/mjoc.v9i2.26720Keywords:
Data Mining, Diabetes Complications, Diabetic Neuropathy, Diabetic Retinopathy, Risk FactorsAbstract
Diabetic retinopathy (DR) and diabetic neuropathy (DN) are the most common complications among diabetes mellitus (DM) patients. Despite the widespread awareness, the implications of these serious diabetes complications remain poorly understood. Hence, this study aims to determine the association between DR and DN, predict DR and identify the significant risk factors associated with DR among DN patients based on the best predictive model obtained. Three models are employed in this study; Logistic Regression (LR) (Forward, Backward, Enter and Optimize), Decision Tree (Information Gain, Gini Index and Gain Ratio) and Artificial Neural Network with a splitting of 70-30. This study involved 361 T2DM patients who had undergone DM screening at the Ophthalmology Clinic, UiTM Medical Specialist Centre. Results of this study show that the prevalence of DR in individuals with DN was 1.75 times more than in individuals without DN. The LR (Optimize Evolutionary) is the best model for LR with accuracy=68.42% and AUC =0.423, compared to the other models; LR Forward (Accuracy=68.42%, AUC = 0.731), LR Backward ((Accuracy=57.89%, AUC=0.487) and LR Enter (Accuracy=57.89%, AUC =0.487). The DT Information Gain is the best model for the Decision Tree model (Accuracy=92.31%, AUC=0.667) compared to the DT Gini Index (Accuracy=92.31%, AUC=0.333) and DT Gain Ratio (Accuracy=84.62%, AUC=0.50). The ANN model gives an accuracy of 68.42% and ROC=0.50. Thus, the DT Information Gain is the best model to predict the presence of DR in T2DM patients with significance factors; duration of DM, Age, diastolic BP and BMI. The significance of this study can be applied globally to promote better health understanding in predicting the presence of DR among T2DM with DN patients and future prevention.
References
Abougalambou, S. S. I., & Abougalambou, A. S. (2015). Explorative study on diabetes neuropathy among type II diabetic patients in Universiti Sains Malaysia Hospital. Diabetes & Metabolic Syndrome Clinical Research & Reviews, 6(3), 167–172. https://doi.org/10.1016/j.dsx.2012.09.002.
Ali, M. H. M., Draman, N., Mohamed, W. M., Yaakub, A., & Embong, Z. (2016). Predictors of proliferative diabetic retinopathy among patients with type 2 diabetes mellitus in Malaysia as detected by fundus photography. Journal of Taibah University Medical Sciences, 11(4), 353– 358. https://doi.org/10.1016/j.jtumed.2016.03.002.
Anandhanarayanan, A., Teh, K., Goonoo, M., Tesfaye, S., & Selvarajah, D. (2022, March 15). Diabetic neuropathies. Endotext - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK279175/?report=classic.
Ashok, S., Ramu, M., Deepa, R., & Mohan, V. (2002). Prevalence of neuropathy in type 2 diabetic patients attending a diabetes centre in South India. ResearchGate. https://www.researchgate.net/publication/11223182.
Bui, H. D. T., Jing, X., Lu, R., Chen, J., Ngo, V., Cui, Z., Liu, Y., Li, C., & Ma, J. (2019). Prevalence of and factors related to microvascular complications in patients with type 2 diabetes mellitus in Tianjin, China: a cross-sectional study. Annals of Translational Medicine, 7(14), 325. https://doi.org/10.21037/atm.2019.06.08.
Boulton, A. J., & Malik, R. A. (1998). DIABETIC NEUROPATHY. Medical Clinics of North America, 82(4), 909–929. https://doi.org/10.1016/s0025-7125(05)70029-8.
Chawla, A., Chawla, R., & Jaggi, S. (2016). Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian Journal of Endocrinology and Metabolism, 20(4), 546. https://doi.org/10.4103/2230-8210.183480.
Eyecare Medical Group. (2017). Diabetic retinopathy and neuropathy. Eyecare Medical Group. https://www.eyecaremed.com/news/diabetic-retinopathy-and-neuropathy/
Fiarni, C., Sipayung, E. M., & Maemunah, S. (2019). Analysis and Prediction of Diabetes Complication Disease using Data Mining Algorithm. Procedia Computer Science, 161, 449–457. https://doi.org/10.1016/j.procs.2019.11.144.
Gokhale, V. S., Chaudhari, N. C., Kakrani, A. L., & Shah, B. P. (2015). High incidence of retinopathy in neuropathy proven diabetic patients: A cohort study. International Journal of Medicine and Public Health, 5(4), 289. https://doi.org/10.4103/2230-8598.165952.
Hashad, A. A., Wah, K. K., Alnoor, A., & Chew, X. (2024). Exploratory Analysis With Association Rule Mining Algorithms In The Retail Industry. Malaysian Journal of Computing (MJoC), 9(1), 1746–1758. https://doi.org/10.24191/mjoc.v9i1.21433.
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression. In Wiley series in probability and statistics. https://doi.org/10.1002/9781118548387.
Hussein, Z., Taher, S. W., Singh, H. K. G., & Swee, W. C. S. (2015). Diabetes care in Malaysia: problems, new models, and solutions. Annals of Global Health, 81(6), 851. https://doi.org/10.1016/j.aogh.2015.12.016.
Institute for Public Health. (2020). National health and morbidity survey (NHMS) 2019: Noncommunicable diseases, healthcare demand, and health literacy: Key findings.
Kalpana, R., Kanmani, K., & Anuradha, P. (2020). Association of peripheral neuropathy with retinopathy in diabetic patients. Indian Journal of Clinical and Experimental Ophthalmology, 4(1), 115–119. https://doi.org/10.18231/2395-1451.2018.0026.
Karimi, Z. (2021). Confusion Matrix. ResearchGate. https://www.researchgate.net/publication/355096788.
Khairudin, Z., Razak, N. a. A., Rahman, H. a. A., Kamaruddin, N., & Aziz, N. a. A. (2020). Prediction Of Diabetic Retinopathy Among Type II Diabetic Patients Using Data Mining Techniques. Malaysian Journal of Computing, 5(2), 572. https://doi.org/10.24191/mjoc.v5i2.10554.
Kukreja, H. N., Bharath, N., Siddesh, C. S., & Kuldeep, S. (2016). An introduction to artificial neural network. International Journal of Engineering and Techniques, 1(5).
Kuldeep, S., & Anitha, G. S. (2015). Neural network approach for processing substation alarms. International Journal of Power Electronics Controllers and Converters. Retrieved from www.journalspub.com.
Marinov, M., Mosa, A. S., Yoo, I., & Boren, S. A. (2011). Data-mining technologies for diabetes: a systematic review. Journal of diabetes science and technology, 5(6), 1549–1556. https://doi.org/10.1177/193229681100500631.
Mimi, O., Teng, C. L., & Chia, Y. C. (2003). The prevalence of diabetic peripheral neuropathy in an outpatient setting. The Medical journal of Malaysia, 58(4), 533–538.
Ministry of Health. (2017). Diabetic retinopathy screening module (2nd ed.).
Montagna, S., Pengo, M. F., Ferretti, S., Borghi, C., Ferri, C., Grassi, G., Muiesan, M. L., & Parati, G. (2022). Machine Learning in Hypertension Detection: A study on World Hypertension Day data. Journal of Medical Systems, 47(1). https://doi.org/10.1007/s10916-022-01900-5.
Moore, D. S., Notz, W. I., & Fligner, M. A. (2017). The basic practice of statistics (6th ed.). W. H. Freeman and Company.
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). (2016, December).Diabetes.https://www.niddk.nih.gov/healthinformation/diabetes/overview/what-isdiabetes.
Noh, S. S. M., Ibrahim, N., Mansor, M. M., & Yusoff, M. (2023). Hybrid filtering methods for feature selection in high-dimensional cancer data. International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering, 13(6), 6862. https://doi.org/10.11591/ijece.v13i6.pp6862-6871.
Pala, Tuba and Camurcu, Ali Yilmaz (2014) Evaluation of data mining classification and clustering techniques for diabetes / Tuba Pala and Ali Yilmaz Camurcu. Malaysian Journal of Computing (MJoC), 2 (1): 4. pp. 37-45. ISSN 2231-7473.
Rokach, L., & Maimon, O. (2006). Decision Trees. In Springer eBooks (pp. 165–192). https://doi.org/10.1007/0-387-25465-x_9.
Saxena, A., Jain, M., & Shrivastava, P. (2021). Data mining techniques based diabetes prediction. Indian Journal of Artificial Intelligence and Neural Networking, 1(2), 29–35. https://doi.org/10.35940/ijainn.b1012.041221.
Slakter, J. S., Schneebaum, J. W., & Shah, S. A. (2015). Digital Algorithmic Diabetic Retinopathy Severity Scoring System (An American Ophthalmological Society Thesis). Transactions of the American Ophthalmological Society, 113, T9.
Sunardi, Fadlil, A., & Perdana Kusuma, N. M. (2023). Cyber fraud profiling with routine activity theory using data mining techniques. Malaysian Journal of Computing (MJoC), 8(2), 1517–1533. ISSN 2600-8238.
Wu, H., Yang, S., Huang, Z., He, J., & Wang, X. (2018). Type 2 diabetes mellitus prediction model based on data mining. Informatics in Medicine Unlocked, 10, 100–107. https://doi.org/10.1016/j.imu.2017.12.006.
Yau, J. W., Rogers, S. L., Kawasaki, R., Lamoureux, E. L., Kowalski, J. W., Bek, T., Chen, S., Dekker, J. M., Fletcher, A., Grauslund, J., Haffner, S., Hamman, R. F., Ikram, M. K., Kayama, T., Klein, B. E., Klein, R., Krishnaiah, S., Mayurasakorn, K., O’Hare, J. P., Wong, T. Y. (2012). Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 35(3), 556–564. https://doi.org/10.2337/dc11-1909.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nur Balqis Oon, Zuraida Khairudin, Hezlin Aryani Abd Rahman, Norbaizura Kamarudin, Nur Syamimi Haji Abu Bakar, Nor Azimah Abd Aziz

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




