OSTEOARTHRITIS GRADING: A SYNTHESIZED MAGNETIC RESONANCE IMAGES TECHNIQUE

Authors

  • Qiu Ruiyun College of Computing, Informatics and Mathematics, Universiti Teknologi MARA Shah Alam, Selangor, Malaysia
  • Siti Khatijah Nor Abdul Rahim College of Computing, Informatics and Mathematics, Universiti Teknologi MARA Shah Alam, Selangor, Malaysia
  • Nursuriati Jamil College of Computing, Informatics and Mathematics, Universiti Teknologi MARA Shah Alam, Selangor, Malaysia
  • Raseeda Hamzah College of Computing, Informatics and Mathematics, Universiti Teknologi MARA Shah Alam, Selangor, Malaysia
  • Fu Xiaoling Department of Orthopedics, The Second Affiliated Hospital of Nanchang University,Jiangxi,China

DOI:

https://doi.org/10.24191/mjoc.v9i2.27015

Keywords:

Deep Learning, Multimodal Synthesis, OA Grading, Pre-Process

Abstract

Osteoarthritis (OA) in the knee is a major cause of decreased activity and physical limitations among older people. Identifying and treating knee osteoarthritis in its early stages can help patients delay the progression of the condition. Currently, early detection of knee osteoarthritis involves the use of X-ray images and assessment using the Kellgren-Lawrence (KL) grading system. Doctors' evaluations can be subjective and may differ among different doctors. Similar to a computer systems analyst, the automatic knee OA grading and diagnosis can be a valuable tool for doctors, enabling them to streamline their workload and provide more efficient care. An innovative network named OA_GAN_ViT has been developed to autonomously detect knee OA. The network is a ViT architecture consisting of two branches: one branch utilizes the synthesized MR image derived from X-ray images for data processing before classification operations via the GAN network, while the other branch employs a histogram-equalized X ray image. The OA_GAN_ViT network demonstrated superior performance in terms of accuracy and MAE compared to well-known neural networks such as ResNet, DenseNet, VGG, Inception, and ViT. It achieved an impressive accuracy of 79.2 and an MAE of 0.492, highlighting its effectiveness.

References

Antony, J., McGuinness, K., Moran, K., & O’Connor, N. E. (2017). Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks. 376–390.

Antony, J., McGuinness, K., Moran, K., & O’Connor, N. E. (2020). Feature learning to automatically assess radiographic knee osteoarthritis severity. Deep Learners and Deep Learner Descriptors for Medical Applications, 9–93.

Antony, J., McGuinness, K., O’Connor, N. E., & Moran, K. (2016). Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. 2016 23rd International Conference on Pattern Recognition (ICPR), 1195–1200. https://doi.org/10.1109/ICPR.2016.7899799

Chen, P., Gao, L., Shi, X., Allen, K., & Yang, L. (2019). Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss. Computerized Medical Imaging and Graphics, 75, 84–92. https://doi.org/10.1016/j.compmedimag.2019.06.002

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 770–778.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. 4700–4708.

Hui, S. H., Khai, W. K., XinYing, C., & Wai, P. W. (2023). Prediction of customer churn for ABC Multistate Bank using machine learning algorithms/Hui Shan Hon...[et al.]. Malaysian Journal of Computing (MJoC), 8(2), 1602–1619.

Kellgren, J. H., & Lawrence, J. S. (1957). Radiological Assessment of Osteo-Arthrosis. Annals of the Rheumatic Diseases, 16(4), 494–502. https://doi.org/10.1136/ard.16.4.494

Li, D., Li, S., Chen, Q., & Xie, X. (2020). The Prevalence of Symptomatic Knee Osteoarthritis in Relation to Age, Sex, Area, Region, and Body Mass Index in China: A Systematic Review and Meta-Analysis. Frontiers in Medicine, 7, 304. https://doi.org/10.3389/fmed.2020.00304

Liu, W., Luo, linkai, Peng, H., Zhang, Q., & Huang, W. (2021). Grading scoring of knee osteoarthritis based on adaptive ordinal penalty weighted deep neural networks. Chinese Journal of Scientific Instrument, 42(7), 145–154. https://doi.org/10.19650/j.cnki.cjsi.J2107390

Peterfy, C. G., Schneider, E., & Nevitt, M. (2008). The osteoarthritis initiative: Report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis and Cartilage, 16(12), 1433–1441. https://doi.org/10.1016/j.joca.2008.06.016

Saini, D., Khosla, A., Chand, T., Chouhan, D. K., & Prakash, M. (2023). Automated knee osteoarthritis severity classification using three‐stage preprocessing method and VGG16 architecture. International Journal of Imaging Systems and Technology, ima.22845. https://doi.org/10.1002/ima.22845

Shamir, L., Ling, S. M., Scott, W. W., Bos, A., Orlov, N., Macura, T. J., Eckley, D. M., Ferrucci, L., & Goldberg, I. G. (2009). Knee X-Ray Image Analysis Method for Automated Detection of Osteoarthritis. IEEE Transactions on Biomedical Engineering, 56(2), 407–415. https://doi.org/10.1109/TBME.2008.2006025

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. 1–9.

Tiulpin, A., Thevenot, J., Rahtu, E., Lehenkari, P., & Saarakkala, S. (2018). Automatic knee osteoarthritis diagnosis from plain radiographs: A deep learning-based approach. Scientific Reports, 8(1), 1727.

Wesseling, J., Dekker, J., van den Berg, W. B., Bierma Zeinstra, S. M. A., Boers, M., Cats, H. A., Deckers, P., Gorter, K. J., Heuts, P. H. T. G., Hilberdink, W. K. H. A., Kloppenburg, M., Nelissen, R. G. H. H., Oosterveld, F. G. J., Oostveen, J. C. M., Roorda, L. D., Viergever, M. A., Wolde, S. ten, Lafeber, F. P. J. G., & Bijlsma, J. W. J. (2009). CHECK (Cohort Hip and Cohort Knee): Similarities and differences with the Osteoarthritis Initiative. Annals of the Rheumatic Diseases, 68(9), 1413 1419. https://doi.org/10.1136/ard.2008.096164

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2020). Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (arXiv:1703.10593). arXiv. http://arxiv.org/abs/1703.10593

Downloads

Published

2024-10-01

How to Cite

Ruiyun, Q. ., Abdul Rahim, S. K. N. ., Jamil, N. ., Hamzah, R., & Xiaoling, F. . (2024). OSTEOARTHRITIS GRADING: A SYNTHESIZED MAGNETIC RESONANCE IMAGES TECHNIQUE. Malaysian Journal of Computing, 9(2), 1944–1954. https://doi.org/10.24191/mjoc.v9i2.27015