ON A COMPREHENSIVE CLASS OF ANALYTIC P-VALENT FUNCTIONS ASSOCIATED WITH SHELL-LIKE CURVE AND MODIFIED SIGMOID FUNCTION

Authors

  • Jamiu Olusegun Hamzat Department of Mathematics, Faculty of Science, University of Lagos, Nigeria
  • Abiodun Tinuoye Oladipo Department of Pure and Applied Mathematics, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso Oyo State, Nigeria

DOI:

https://doi.org/10.24191/mjoc.v7i1.10494

Keywords:

Analytic Function, Bounded Turning Function, Convex Function, Starlike Function, Univalent Function

Abstract

In this paper, the authors introduce and study a new class of analytic p-valent functions and its connections with some famous subclasses of analytic and univalent functions associated with shelllike curve and modified sigmoid function in the open unit disk E= {z : z |<1}. In particular, the coefficient condition for function f(z) belonging to the class Bp (λ, β) is investigated using a succinct mathematical approach. In addition, as a special case, convex functions of order 1/4 are shown to be in the aforementioned class Bp(λ, β) in E. With the aid of subordination pri nciple, the authors obtain the first three Taylor-Maclaurin coefficients |ap+1 |, |ap+2 | and |ap+3 | as well as the Fekete-Szegö functional |ap+2 -ηa2p+1| for functions f(z) belonging to the class Bp(λ, β, σ;p ̃) involving modified sigmoid function and associated with shell-like curve.

References

Darus M., Aldawish I., & Ibrahims R. M. (2015). Some concavity properties of general integral operators. Bull. Iranian Math. Soc., 41(5), 1085-1092.

Duren P. L. (1983). Univalent functions. Grundlehren der Mathematischen Wissenschaften Series, 259. Springer Verlag, New York.

Dziok J., Raina R. K. and Sokol J. (2011a). Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers. Comput. Math. Appl., 61, 2605-2613.

Dziok J., Raina R. K., & Sokol J. (2011b). On α − convex functions related to a shell-like curve connected with Fibonacci numbers. Appl. Math. Comput., 218, 996-1002.

Fadipe-Joseph O. A., Oladipo A. T., & Ezeafulukwe U. A. (2013). Modified sigmoid function in univalent theory. Int. J. Math. Sci. Engr. Appl., 7, 313-317.

Frasin B. A., & Jahangiri J. M. (2009). A new and comprehensive class of analytic functions. Analele Universitatii Oradea, Fasc. Mathematica, Tom XV, 59-62.

Frasin B. A., & Darus M. (2001). On certain analytic univalent functions. Int. J. Math. and Math. Sci., 25(5), 305-310.

Hamzat J. O., & El-Ashwah R. M. (2020). Application of a subordination theorem associated with certain new generalized subclasses of analytic and univalent functions. J. Egyptian Math. Soc. 28:33, 1-10.

Hamzat J. O. (2017). Coefficient bounds for Bazilevic functions associated with modified sigmoid function. Asian Research J. Math., no.33818, 5(3), 1-10.

Hamzat J. O., & Olayiwola M.A. (2017). Initial coefficient estimates for certain generalized class of analytic functions involving sigmoid function. Asian Research J. Math., no.33819, 5(3), 1-11.

Hamzat J. O., & Sangoniyi S. O. (2021). Fekete-Szego inequalities associated with certain generalized class of non-Bazilevic function. Int. J. Math. Sci. Opt.: Theory and Applications. 6 (2), 874-885.

Jack I. S. (1971). Function starlike and convex of order α . J. London Math. Soc. 3, 469-474.

Murugusundaramoorthy G., & Magesh N. (2011). On certain sufficient conditions for analytic univalent functions. EUROPEAN J. of Pure and Appl.Math., 4(1), 76-82.

Nunokawa M. (1995). On some angular estimates of analytic functions. Math. Japon, 41(2), 447-452. MR 96c:30013.zbl.30014.

Oladipo A. T., & Gbolagade A. M. (2014). Subordination results for logistic sigmoid activation function in the space of univalent functions in the unit disk, Adv. Comp. Sci. Engr. 12(2), 61-79.

Orhan H., Magesh N., & Abirami C. (2020). Fekete-Szego problem for bi-Bazilevic functions related to shell-like curves. AIMS Math, 5(5): 4412-4423. DOI:10.3934/math.2020281

Raina R. K., & Sokol J. (2016). Fekete-Szego problems for some starlike functions related to shelllike curves. Math. Slovaca, 66, 135-140.

Sokol J. (1999). On starlike functions connected with Fibonacci numbers. Folia Scient. Univ. Tech. Resoviensis, 175, 111-116.

Downloads

Published

2022-02-14

How to Cite

Hamzat, J. O. ., & Oladipo, A. T. . (2022). ON A COMPREHENSIVE CLASS OF ANALYTIC P-VALENT FUNCTIONS ASSOCIATED WITH SHELL-LIKE CURVE AND MODIFIED SIGMOID FUNCTION. Malaysian Journal of Computing, 7(1), 995–1010. https://doi.org/10.24191/mjoc.v7i1.10494