TOWARDS A UNIFIED FRAMEWORK FOR KNOWLEDGE TRACING WITH GRAPH CONVOLUTIONAL AND NEURAL ARCHITECTURES
DOI:
https://doi.org/10.24191/mjoc.v10i2.7915Keywords:
Adaptive Learning, Graph Convolutional Networks, Intelligent Tutoring Systems, Knowledge Tracing, Neural Sequence Models, Socio-Constructivist modelsAbstract
This paper sets out to propose a unified theoretical framework for knowledge tracing (KT) that combines graph convolutional networks (GCNs) with neural sequence architectures in intelligent tutoring systems. While existing methods have achieved some success, they face limitations in modelling relational dependencies among concepts and the temporal progression of learner behaviour. Building on socio-constructivist views of knowledge as a network of relations and connectionist accounts of learning as adaptation over time, the framework integrates graph-based relational reasoning with sequence-based temporal modelling. The argument advanced here is that the integration offers interpretable representations of knowledge states while preserving predictive performance. The paper draws together recent developments in graph-enhanced KT and attention-based models and outlines design heuristics for scalable deployment. Key issues are identified, including computational cost, data sparsity, and explainability for classroom use. It is anticipated that the framework will inform the design of more systems and provide a tractable agenda for empirical validation across multiple domains and learner populations.
References
Aimran, N., Rambli, A., Afthanorhan, A., Mahmud, A., Sapri, A., & Aireen, A. (2022). Prediction of Malaysian women divorce using machine learning techniques. Malaysian Journal of Computing, 7(2), 1067–1081. https://doi.org/10.24191/mjoc.v7i2.17077
Cheng, K., Peng, L., Wang, P., Ye, J., Sun, L., & Du, B. (2024). Dygkt: dynamic graph learning for knowledge tracing. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 409-420. https://doi.org/10.1145/3637528.3671773
Corbett, A. T., & Anderson, J. R. (1994). Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction, 4(4), 253–278. https://doi.org/10.1007/BF01099821
Dao, T., Fu, D. Y., Ermon, S., Rudra, A., & Ré, C. (2022). Flashattention: fast and memory-efficient exact attention with io-awareness.. https://doi.org/10.48550/arxiv.2205.14135
Fashoto, S. G., Mbunge, E., Ogunleye, G., & Van den Burg, J. (2021). Implementation of machine learning for predicting maize crop yields using multiple linear regression and backward elimination. Malaysian Journal of Computing, 6(1), 679–697. https://mjoc.uitm.edu.my/main/images/journal/vol6-1-2021/4-Fashoto-et-al-Vol-61.pdf
Gao, S., Li, Y., Shen, Y., Shao, Y., & Chen, L. (2024). ETC: Efficient Training of Temporal Graph Neural Networks over Large-Scale Dynamic Graphs. PVLDB, 17(5), 1060–1072. https://doi.org/10.14778/3641204.3641215
Ghosh, S., Heffernan, N., & Lan, A. S. (2020). Context-aware attentive knowledge tracing. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2330–2339). ACM. https://doi.org/10.1145/3394486.3403307
Hiromi, N., Iwasawa, Y., & Matsuo, Y. (2021). Graph-based knowledge tracing: modeling student proficiency using graph neural networks. Web Intelligence, 19(1-2), 87-102. https://doi.org/10.3233/web-210458
Ke, F., Wang, W., Tan, W., Du, L., Jin, Y., Huang, Y., … & Yin, H. (2024). Hitskt: a hierarchical transformer model for session-aware knowledge tracing. Knowledge-Based Systems, 284, 111300. https://doi.org/10.1016/j.knosys.2023.111300
Khajah, M., Lindsey, R., & Mozer, M. C. (2016). How deep is knowledge tracing? https://doi.org/10.48550/arxiv.1604.02416
Li, W. and Wu, G. (2023). One-shot based knowledge graph embedded neural architecture search algorithm. Frontiers in Computing and Intelligent Systems, 3(3), 1-5. https://doi.org/10.54097/fcis.v3i3.7982
Lu, Y., Tong, L., & Cheng, A. (2023). Advanced knowledge tracing: incorporating process data and curricula information via an attention-based framework for accuracy and interpretability. https://doi.org/10.31219/osf.io/3k7z2
Nakagawa, H., Iwasawa, Y., & Matsuo, Y. (2021). Graph-Based Knowledge Tracing: Modelling Student Proficiency Using Graph Neural Networks. Web Intelligence, 19(1–2), 87–102. https://doi.org/10.3233/WEB-210458
Pandey, S., & Karypis, G. (2019). A self-attentive model for knowledge tracing. arXiv. https://arxiv.org/abs/1907.06837
Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., & Sohl-Dickstein, J. (2015). Deep knowledge tracing. In Advances in Neural Information Processing Systems (Vol. 28). Curran Associates. https://papers.nips.cc/paper/2015/hash/bac9162b47c56fc8a4d2a519803d51b3-Abstract.html
Qu, K., Li, K. C., Wong, B. T. M., Wu, M. M., & Liu, M. (2024). A survey of knowledge graph approaches and applications in education. Electronics, 13(13), 2537. https://doi.org/10.3390/electronics13132537
Qiang, H., Su, W., Sun, Y., Huang, T., & Shi, J. (2022). Ntm-based skill-aware knowledge tracing for conjunctive skills. Computational Intelligence and Neuroscience, 2022, 1-16. https://doi.org/10.1155/2022/9153697
Rahimi, S., & Shute, V. J. (2021). Learning Analytics Dashboards in Educational Games. In S. Ifenthaler & M. Khalil (Eds.), Visualizations and Dashboards for Learning Analytics (pp. 527–546). Springer. https://doi.org/10.1007/978-3-030-81222-5_24
Rogers, T. T. and McClelland, J. L. (2014). Parallel distributed processing at 25: further explorations in the microstructure of cognition. Cognitive Science, 38(6), 1024-1077. https://doi.org/10.1111/cogs.12148
S. Shen et al., "A Survey of Knowledge Tracing: Models, Variants, and Applications," in IEEE Transactions on Learning Technologies, vol. 17, pp. 1858-1879, 2024, http://doi.org/10.1109/TLT.2024.3383325
Sunardi, S., Effendy, M., & Fadhillah, A. (2023). Cyber fraud profiling with routine activity theory using data mining techniques. Malaysian Journal of Computing, 8(1), 529–546. https://doi.org/10.24191/mjoc.v8i1.20296
Tay, Y., Dehghani, M., Bahri, D., & Metzler, D. (2022). Efficient transformers: a survey. ACM Computing Surveys, 55(6), 1-28. https://doi.org/10.1145/3530811
Tato, A. and Nkambou, R. (2022). Infusing expert knowledge into a deep neural network using attention mechanism for personalized learning environments. Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.921476
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.
Wu, Z., Huang, L., Huang, Q., Huang, C., & Tang, Y. (2022). SGKT: Session Graph-Based Knowledge Tracing for Student Performance Prediction. Expert Systems with Applications, 206, 117681. https://doi.org/10.1016/j.eswa.2022.117681
Yeung, C.-K., & Yeung, D.-Y. (2018). Addressing Two Problems in Deep Knowledge Tracing via Prediction-Consistent Regularization. arXiv:1806.02180. https://arxiv.org/abs/1806.02180
Younesian, T., Daza, D., van Krieken, E., Thanapalasingam, T., & Bloem, P. (2023). Grapes: Learning to sample graphs for scalable graph neural networks. arXiv preprint arXiv:2310.03399. https://doi.org/10.48550/arXiv.2310.03399
Zhang, K., Qin, Z., & Kuang, Y. (2022). Knowledge Tracing via Attention-Enhanced Encoder-Decoder. Computational Intelligence and Neuroscience, 2022, 1552745. https://doi.org/10.1155/2022/1552745
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yaxi Su, Mohamad Yusof Darus, Norizan Mat Diah, Jinpeng Huang, Azlin Ramli

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




