CHARACTERIZATION OF SEWAGE SLUDGE FOR SUSTAINABLE URBAN ENVIRONMENTS: ASSESSING HEAVY METAL ENRICHMENT, THERMAL DECOMPOSITION, AND PYROLYSIS BEHAVIOR

Authors

  • Mohd Syazwan Mohd Ghazali Section of Environmental Engineering, Universiti Kuala Lumpur, Malaysia Institute of Chemical and Bioengineering, 78000 Alor Gajah, Melaka, Malaysia
  • Syed Shatir A. Syed-Hassan School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.24191/myse.v12i1.1383

Keywords:

Sewage sludge, heavy metals, pyrolysis

Abstract

Rapid urbanisation and population growth have led to a surge in sewage sludge (SS) generation, posing environmental challenges due to its complex composition, particularly heavy metal content. This study investigates heavy metal analysis, thermal decomposition behaviour, and slow pyrolysis of SS to address these concerns. SS samples were collected from a sewage treatment plant and analysed for heavy metals using ICP-OES. Thermogravimetric analysis (TGA) clarified thermal decomposition behaviour, while slow pyrolysis experiments at varying temperatures provided insights into product yields. Results revealed significant concentrations of heavy metals and other elements in SS, with pyrolysis temperatures between 450°C and 600°C ensuring complete conversion of volatile matter. Slow pyrolysis predominantly yielded biochar, indicating limited suitability for bio-oil production. Additionally, pyrolysis enriched biochar with heavy metals while decreasing cobalt concentration, highlighting complex mechanisms in heavy metal redistribution. This research contributes to understanding heavy metal behaviour and thermal conversion dynamics in sewage sludge, informing sustainable waste management strategies for mitigating environmental impacts.

References

Agrafioti, E., Bouras, G., Kalderis, D., & Diamadopoulos, E. (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 72–78. https://doi.org/10.1016/j.jaap.2013.02.010

Alvarez, J., Amutio, M., Lopez, G., Barbarias, I., Bilbao, J., & Olazar, M. (2015). Sewage sludge valorization by flash pyrolysis in a conical spouted bed reactor. Chemical Engineering Journal, 273, 173–183. https://doi.org/10.1016/j.cej.2015.03.047

Omar, N. F., AH, F. N. A., Farhan, N., & MH, N. A. (2023). Sustainable poultry waste management system to organic compost. Malaysian Journal of Sustainable Environment (MySE), 10(2), 118-134.

Brown, T. R., Wright, M. M., & Brown, R. C. (2011). Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels, Bioproducts and Biorefining, 5(1), 54-68.. https://doi.org/10.1002/bbb

Canziani, R., & Spinosa, L. (2019). Sludge from wastewater treatment plants. In Industrial and Municipal Sludge (pp. 3-30). Butterworth-Heinemann.. https://doi.org/10.1016/b978-0-12-815907-1.00001-5

Chan, W. P., & Wang, J. Y. (2016). Comprehensive characterisation of sewage sludge for thermochemical conversion processes - Based on Singapore survey. Waste Management, 54, 131–142. https://doi.org/10.1016/j.wasman.2016.04.038

Fonts, I., Gea, G., Azuara, M., Ábrego, J., & Arauzo, J. (2012). Sewage sludge pyrolysis for liquid production: A review. Renewable and Sustainable Energy Reviews, 16(5), 2781–2805. https://doi.org/10.1016/j.rser.2012.02.070

Fonts, I., Juan, A., Gea, G., Murillo, M. B., & Sánchez, J. L. (2008). Sewage sludge pyrolysis in fluidized bed, 1: Influence of operational conditions on the product distribution. Industrial and Engineering Chemistry Research, 47(15), 5376–5385. https://doi.org/10.1021/ie7017788

Frišták, V., Pipíška, M., & Soja, G. (2018). Pyrolysis treatment of sewage sludge: A promising way to produce phosphorus fertiliser. Journal of Cleaner Production, 172, 1772–1778. https://doi.org/10.1016/j.jclepro.2017.12.015

Gao, N., Li, J., Qi, B., Li, A., Duan, Y., & Wang, Z. (2014). Thermal analysis and products distribution of dried sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 105, 43–48. https://doi.org/10.1016/j.jaap.2013.10.002

Ghodke, P. K., Sharma, A. K., Pandey, J. K., Chen, W. H., Patel, A., & Ashokkumar, V. (2021). Pyrolysis of sewage sludge for sustainable biofuels and value-added biochar production. Journal of Environmental Management, 298(January), 113450. https://doi.org/10.1016/j.jenvman.2021.113450

Grønli, M. G., Várhegyi, G., & Di Blasi, C. (2002). Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research, 41(17), 4201-4208.

Twardowska, I., Allen, H. E., Kettrup, A. F., & Lacy, W. J. (2004). Solid waste: assessment, monitoring and remediation. Gulf Professional Publishing.

Jellali, S., Khiari, B., Usman, M., Hamdi, H., Charabi, Y., & Jeguirim, M. (2021). Sludge-derived biochars: A review on the influence of synthesis conditions on pollutants removal efficiency from wastewaters. Renewable and Sustainable Energy Reviews, 144, 111068. https://doi.org/10.1016/j.rser.2021.111068

Laws of Malaysia, Act 655, Water Services Industry Act. (2006).

Liu, X., Chang, F., Wang, C., Jin, Z., Wu, J., Zuo, J., & Wang, K. (2018). Pyrolysis and subsequent direct combustion of pyrolytic gases for sewage sludge treatment in China. Applied Thermal Engineering, 128(2018), 464–470.

https://doi.org/10.1016/j.applthermaleng.2017.08.091

Mohd Ghazali, M. S., Md Zaini, M. S., Arshad, M., & Syed-Hassan, S. S. A. (2024). Co-production of biochar and carbon nanotube from sewage sludge in a two-stage process coupling pyrolysis and catalytic chemical vapour deposition. Waste Disposal & Sustainable Energy. https://doi.org/10.1007/s42768-024-00194-2

Moran, S. (2018). Sludge characterization and treatment objectives. An Applied Guide to Water and Effluent Treatment Plant Design, 255–263. https://doi.org/10.1016/b978-0-12-811309-7.00021-7

Mustafa, M. A. S., Mohd Noor, N. H., Mohd Saharom, N. A., & Shamsol Kamal, N. S. S. (2022). Understanding Malaysian household waste separation: an extended theory of planned behaviour. Malaysian Journal of Sustainable Environment, 9(1), 19. https://doi.org/10.24191/myse.v9i1.17285

Praspaliauskas, M., Pedisius, N., & Striugas, N. (2018). Elemental migration and transformation from sewage sludge to residual products during the pyrolysis process. https://doi.org/10.1021/acs.energyfuels.8b00196

Rorat, A., Courtois, P., Vandenbulcke, F., & Lemiere, S. (2019). Sanitary and environmental aspects of sewage sludge management. Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery, 1, 155–180. https://doi.org/10.1016/B978-0-12-815907-1.00008-8

Racek, J., Sevcik, J., Chorazy, T., Kucerik, J., & Hlavinek, P. (2020). Biochar – Recovery Material from Pyrolysis of Sewage Sludge: A Review. Waste and Biomass Valorization, 11(7), 3677–3709. https://doi.org/10.1007/s12649-019-00679-w

Roslan, S. Z., Zainudin, S. F., Mohd Aris, A., Chin, K. B., Musa, M., Mohamad Daud, A. R., & Syed Hassan, S. S. A. (2023). Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar. Energies, 16(5), 2483.

Ruiz-Gómez, N., Quispe, V., Ábrego, J., Atienza-Martínez, M., Murillo, M. B., & Gea, G. (2017). Co-pyrolysis of sewage sludge and manure. Waste Management, 59, 211–221. https://doi.org/10.1016/j.wasman.2016.11.013

Samolada, M. C., & Zabaniotou, A. A. (2014). Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Management, 34(2), 411–420. https://doi.org/10.1016/j.wasman.2013.11.003

Sánchez, M. E., Menéndez, J. A., Domínguez, A., Pis, J. J., Martínez, O., Calvo, L. F., & Bernad, P. L. (2009). Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass and Bioenergy, 33(6–7), 933–940. https://doi.org/10.1016/j.biombioe.2009.02.002

Sommers, L. E. (1977). Chemical composition of sewage sludges and analysis of their potential use as fertilizers (Vol. 6, No. 2, pp. 225-232). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.. https://doi.org/10.2134/jeq1977.00472425000600020026x

Syed-Hassan, S. S. A., Wang, Y., Hu, S., Su, S., & Xiang, J. (2017). Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renewable and Sustainable Energy Reviews, 80, 888–913. https://doi.org/10.1016/j.rser.2017.05.262

Trinh, T. N., Jensen, P. A., Dam-Johansen, K., Knudsen, N. O., & Sørensen, H. R. (2013). Influence of the pyrolysis temperature on sewage sludge product distribution, bio-oil, and char properties. Energy & Fuels, 27(3), 1419-1427.

Abdul Hamid, M,H, (2019). Opportunities in research and capacity development for the water & wastewater sector - Malaysia and beyond, Seminar on Wastewater Wealth.

Xie, Q., Peng, P., Liu, S., Min, M., Cheng, Y., Wan, Y., Li, Y., Lin, X., Liu, Y., Chen, P., & Ruan, R. (2014). Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production. Bioresource Technology, 172, 162–168. https://doi.org/10.1016/j.biortech.2014.09.006

Zain, S. M., Basri, H., Suja’, F., & Jaafar, O. (2002). Land application technique for the treatment and disposal of sewage sludge. Water Science and Technology, 46(9), 303–308.

Zhang, Y. fan, Zhang, S. yu, Mao, Q., Li, H., Wang, C. wei, Jiang, F. hao, & Lyu, J. fu. (2018). Volatility and partitioning of Cd and Pb during sewage sludge thermal conversion. Waste Management, 75, 333–339. https://doi.org/10.1016/j.wasman.2018.01.042

Downloads

Published

2024-08-05

How to Cite

Mohd Ghazali, M. S., & A. Syed-Hassan, S. S. . (2024). CHARACTERIZATION OF SEWAGE SLUDGE FOR SUSTAINABLE URBAN ENVIRONMENTS: ASSESSING HEAVY METAL ENRICHMENT, THERMAL DECOMPOSITION, AND PYROLYSIS BEHAVIOR . Malaysian Journal of Sustainable Environment, 11(2), 119–134. https://doi.org/10.24191/myse.v12i1.1383