IN VITRO SHOOT PROLIFERATION OF Begonia pavonina: A COMPARISON OF SEMISOLID, LIQUID, AND TEMPORARY IMMERSION MEDIUM SYSTEM
Keywords:
Begonia pavonina, in vitro multiplication, liquid medium, semisolid medium, temporary immersion system mediumAbstract
The in vitro shoot proliferation of endemic Begonia pavonina in three culture conditions i.e semisolid medium (SM), liquid culture medium (LM) and in temporary immersion bioreactor system (RITA®) was analyzed in this study. To minimize contamination rates, seeds were surface sterilized and cultured on MS basal media. The clean raised shoots were then used as explants for inoculation onto the tested culture conditions. In this experiment, the explants were maintained in MS medium supplemented with 0.1mgL-1 BAP for shoot multiplication. After 4 weeks of incubation, higher regeneration rates were observed in TIM as compared to other medium conditions. The maximum shoot number was obtained from TIM system with a mean of 5.30 shoots per explant, followed by LM (2.47 shoots per explant) and SM (1.2 shoots per explant). Shoot hyperhydration was also lowest in a TIM system. Overall, TIM was shown to produce higher shoot multiplications combined with healthy morphological characteristics of plantlets. Shoot cultures from the all cultures were successfully rooted in vitro and acclimatized well in the greenhouse.
References
Adelberg, J. (2006). Agitated, thin-films of liquid media for efficient micropropagation. In Engineering for Plant Tissue Culture, Frontiers of Biotechnology; Dutta Gupta, S., Ibaraki, Y., Eds.; Springer: Heidleburg, Germany, 6, 101–117
Akin-Idowu P.E., Ibitoye D.O., & Ademoyegun O.T. (2009.) Plant Tissue Culture: Current Status and Opportunities. African Journal of. Biotechnology, 81637823788
Ahmadian, M., Babaei, A., Shokri, S., & Hessami, S. (2017). Micropropagation of Carnation (Dianthus caryophyllus L.) in Liquid Medium by Temporary Immersion Bioreactor in Comparison with Solid Culture. Journal of Genetic Engineering and Biotechnology, 15, 309-315. doi:15. 10.1016/j.jgeb.2017.07.005.
Aka Kaçar, Y., Biçen, B., Şimşek, Ö., Dönmez, D., Erol, M. (2020). Micropropagation of Spathiphyllum with temporary immersion bioreactor system. Turkish Journal of Agriculture: Food Science and Technology, 8, 1195-1200. doi:10.24925/turjaf.v8i5.1195-1200.3364.
Akita, M., & Takayama S. (1994). Stimulation of potato (Solanum tuberosum L.) tuberization by semicontinuos liquid medium surface level control. Plant Cell Reproduction, 13, 184–187. doi:10.1007/bf00239889
Alvard, D., Cote, F.,& Teisson, C. (1993). Comparison of methods of liquid medium culture for banana micropropagation. Effect of temporary immersion of explants. Plant Cell Tissues Organs Culture, 32, 55–60. doi:10.1007/BF00040116
Aguilar., M.E., Garita, K., Kim, Y.W., & Kim, J.A. (2019). Moon HK. Simple protocol for the micropropagation of teak (Tectona grandis linn.) in semi-solid and liquid media in RITA® bioreactors and ex vitro rooting. American Journal of Plant Sciences, 10: 1121-1141. doi:10.4236/ajps.2019.107081
Arora, Y.K., Nakao, S., & Nakajima, T. (1970). Perpetuation of Begonia rex by aseptic culture with micro-cuttings under various conditions of auxin and cytokinin. Ikushugaku zasshi, 20, 275-281. doi:10.1270/jsbbs1951.20.275
Bayraktar, M. (2019). Micropropagation of Stevia rebaudiana Bertoni Using RITA® Bioreactor. HortScience, 54. 725-731. doi:10.21273/HORTSCI13846-18.
Berghoef, J., & Bruinsma, J. (1980). Nutritional rather than hormonal regulation of sexual expression in Begonia franconis. Phymorphology, 30, 231-236.
Bhosale, U. P., Dubhashi, S. V., Mali, N. S., & Rathod, H. P. (2011). In vitro shoot multiplication in different species of Banana Asian Journal of Plant Science and Research, 1 (3), 23-27.
Burkill, I.H. (1935). A dictionary of the economic products of the Malay Peninsula. I (A-Cod). doi:10.1038/137255c0
Chua L.S.L., Kiew, R., & Chan, Y.M. (2009) Assessing conservation status of Peninsular Malaysian Begonias (Begoniaceae). Blumea, 54(1), 94–98. doi.:10.3767/000651909X474131
Edward, B., Adelina, T., Carolin, S., Philipp, R., & Ulrika, E. (2017). Evaluation of a new temporary immersion bioreactor system for micropropagation of cultivars of Eucalyptus, Birch and Fir. Forests, 8, 196. doi:10.3390/f8060196
Etienne, H., & Berthouly, M. (2002) Temporary immersion systems in plant micropropargation. Plant Cell Tissues Organs Culture, 69, 215–31. doi:10.1023/A:1015668610465
Farahani, F., & Majd, A. (2012) Comparison of liquid culture methods and effect of temporary immersion bioreactor on growth and multiplication of banana (Musa, cv. Dwarf Cavendish). African Journal of Biotechnology, 11. doi:10.5897/AJB11.2020.
Fonnesbech, M. (1974). Temperature effects on shoot and root development from Begonia x cheimantha petiole segments grown in vitro. Physiology Plantarum, 32, 282-286. doi:10.1111/j.1399-3054.1974.tb03135.x
Gatti, E., Sgarbi, E., Ozudogru, E.A., & Lambardi, M. (2017). The effect of Plantform™ bioreactor on micropropagation of Quercus robur in comparison to a conventional in vitro culture system on gelled medium, and assessment of the microenvironment influence on leaf structure. Plant Biosystem, 151:1129–1136. doi: 10.1080/11263504.2017.1340356
Gianguzzi, V., Inglese, P., Barone, E., & Sottile, F. (2019). In vitro regeneration of Capparis spinosa L. by using a temporary immersion system. Plants, 8(6),177. doi:10.3390/plants8060177
Girmansyah, D. (2009). A taxonomic study of Bali and Lombok Begonia (Begoniaceae). Reinwardtia, 12(5): 419–434. doi:10.14203/reinwardtia.v12i5.81
Hahn, E. J., & Paek, K. Y. (2005). Multiplication of Chrysanthemum shoots in bioreactors as affected by culture method and inoculation density of single node stems. Plant cell, Tissue and organ culture, 81(3), 301-306. doi:10.1007/s11240-004-6655-0
Jime´nez, E., Pe´rez, N., DeFeria, M., Barbo´n, R., Capote, A., Cha´ vez, M., Quiala, E., & Pe´rez J. (1999). Improved production of potato microtubers using a temporary immersion system. Plant Cell, Tissues and Organs Culture, 59(1), 19–23. doi:10.1023/A:1006312029055
Kevers, C., Franck, T., Strasser, R.J., Dommes, J., & Gaspar, T. (2004). Hyperhydricity of micropropagated shoots: A typically stress-induced change of physiological state. Plant Cell, Tissues and Organs Culture, 77, 181–191.
Latawa, J., Shukla, M.R., & Saxena, P.K. (2016). An efficient temporary immersion system for micropropagation of hybrid hazelnut. Botany, 94(1), 1–8. doi:10.1139/cjb-2015-0111
Martínez-Estrada, E., Islas-Luna, B., Pérez-Sato, J.A., & Bello-Bello, J.J. (2019). Temporary immersion improves in vitro multiplication and acclimatization of Anthurium andreanum Lind. Scientia Horticulturae, 249, 185-191. doi: 10.1016/j.scienta.2019.01.053.
Mosqueda-Frometa, O., Escalona-Morgado, M.M., Da Silva, J.A.T., Pina Morgado, D.T., & Daquinta-Gradaille, M.A. (2017). In vitro propagation of Gerbera jamesonii Bolus ex Hooker f. In a temporary immersion bioreactor. Plant Cell, Tissues and Organs Culture, 129, 543–55.
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant, 15, 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x
Pavlov, A., & Bley, T. (2006). Betalains biosynthesis by Beta vulgaris L. hairy root culture in a temporary immersion cultivation system. Process Biochemistry, 41, 848-852. doi:10.1016/j.procbio.2005.10.026
Phutthai, T., & Hughes, M. (2016). A new species and a new record in Begonia sect. Platycentrum (Begoniaceae) from Thailand. Garden Bulletin Singapore, 68(1), 99–107.
Preil, W. (2005). General introduction: a personal reflection on the use of liquid media for in vitro culture. In Liquid culture systems for in vitro plant propagation. Springer, Dordrecht. 1-18. doi:10.1007/1-4020-3200-5_1
Preil, W. (2003). Micropropagation of ornamental plants. In Plant tissue culture. Springer, Vienna. pp. 115-133. doi:10.1007/978-3-7091-6040-4_7
Ramírez-Mosqueda, M.A., & Iglesias-Andreu, L.G. (2016). Evaluation of different temporary immersion systems (BIT®, BIG and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cellular & Developmental Biology-Plant, 52, 154–160.
Ramesh, N., Viswanathan, M. B., Saraswathy, A., Balakrishna, K., Brindha, P. & Lakshmanaperumalsamy, P. (2002) Phtyochemical and antimicrobial studies of Begonia malabrica. Journal of Ethnopharmacology, 79(1), 129-132.
Rop, O., Mlcek, J., Jurikova, T., Neugebauerova, J. & Vabkova, J. (2012). Edible Flowers - A new promising source of mineral elements in human nutrition. Molecules, 17, 6672-6683.
Romocea, J. E. (2011). In vitro reactivity of Begonia semperflorens cv.‘ambassador’white to growth regulators. Analele Universităţii din Oradea–Fascicula Biologie, 18(1), 77-80.
Romocea, J.E., Pop L., & Gergely, I. (2010). Initiation of Begonia erythrophylla L. in vitro culture from axillary buds. Analele Universităţii din Oradea, Fascicola Biologie, 17(2), 324-328.
Rosilah, A.A,., Kandasamy, K.I., Faridah, Q.Z., & Namasivayam, P. (2014). Somatic embryogenesis and plant regeneration from leaf explants of endemic Begonia pavonina. Journal of Biology and Earth Sciences, 4 (2), 113-119.
Ruta, C., De Mastro, G., Ancona, S., Tagarelli, A., De Cillis, F., Benelli, C., & Lambardi, M. (2020). Large-Scale Plant production of lycium barbarum l. by liquid culture in temporary immersion system and possible application to the synthesis of bioactive substance. Plants, 9, 844.
Sengar, R.S., Chaudhary, R., & Tyagi, S.K. (2010). Present status and scope of floriculture developed through different biological tools. Research Journal of Agricultural Science, 4, 306-314.
Thorat, B. R., Khan, S., Jadhav, D. & Mrunali, M. (2018). A review on phytochemistry and pharmacology of Begonia malabaricalam, Asian Journal of Research in Pharmaceutical Sciences and Biotechnology, 6(1), 6-15.
Teixeira da Silva, J.A. (2012). Is BA (6-benzyladenine) BAP (6-benzylaminopurine)? The Asian and Australasian Journal of Plant Science and Biotechnology, 6(1), 121-124.
Tian, D.K., Li, C., Tong, Y., Fu, N.F., & Wu R.J. (2017). Occurrence and characteristics of natural hybridization of Begonia in China. Biodiversity Science, 25(6), 654–674.
Vives, K., Andújar, I., & Lorenzo, J.C. (2017). Comparison of different in vitro micropropagation methods of Stevia rebaudiana B. including temporary immersion bioreactor (BIT®) Plant Cell Tissue Organ Culture, 195–199.
Welander, M., Persson, J., Asp, H., & Zhu, L.H. (2014). Evaluation of a new vessel system based on temporary immersion system for micropropagation. Science Horticulture, 179, 227–232.
Ziv, M. (2005). Simple bioreactors for mass propagation of plants. In Liquid culture systems for in vitro plant propagation. Springer, Dordrecht. pp. 79-93. doi:10.1007/s11240-004-6649-y
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Journal of Academia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.