PRELIMINARY STUDY OF 4-ARMS POLY(CAPROLACTONE) STAR-SHAPED POLYMER: SYNTHESIS AND CHARACTERIZATION

Authors

  • Siti Hajar Ahmad Shariff Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
  • Mohamad Wafiuddin Ismail Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia

Keywords:

Star-shaped PCL, ROP, ԑ-caprolactone, bioapplication

Abstract

Star-shaped polymers have vast potential in bioapplication due to their architecture.  In this study, the suitability of ring opening polymerization (ROP) technique to synthesis star-shaped poly(caprolactone) and the thermal properties of the synthesized star-shaped polymers were demonstrated. The 4 -arm star-shaped of poly(caprolactone) (4s PCL) with -OH terminal and average molecular weight (Mn) of 5000, 10000, and 15000 g/mol were synthesized via ROP of ԑ-caprolactone (ԑ-CL) using a symmetric pentaerythritol (PET) as the core. Different molecular weights were obtained by using different ratios of ԑ-CL and PET in the presence of catalyst, stannous octoate (Sn(Oct)2). The FTIR spectra showed the presence of bands of methylene group of polymer repeating chain which confirm ROP of the ԑ-caprolactone. The average molecular weight (Mn) determined from proton nuclear magnetic resonance (1H NMR) analysis showed that all 4s PCL have approximately the same molecular weight as the theoretical values. All polymers obtained had high yield with >85%. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis showed that there were no significance different in the thermal properties of the synthesized polymers.  A single step degradation for all 4s PCL was observed and the crystallization melting point of the polymers was within the range of melting point of PCL.

References

Bhaw-Luximon, A., Jhurry, D., Motala-Timol, S., & Lochee, Y. (2005). Polymerization of ɛ-Caprolactone and its Copolymerization with γ-Butyrolactone using Metal Complexes. Macromolecular Symposia, 231(1), 60–68.

Bhayo, A. M., Abdul-Karim, R., Musharraf, S. G., & Malik, M. I. (2018). Synthesis and characterization of 4-arm star-shaped amphiphilic block copolymers consisting of poly(ethylene oxide) and poly(ε-caprolactone). RSC Advances, 8(50), 28569–28580.

Chen, J., Zhang, H., Chen, J., Wang, X., & Wang, X. (2005). Synthesis of Star‐Shaped Poly(ϵ‐caprolactone)‐b‐Poly(styrene) Block Copolymer by Combining Ring‐Opening Polymerization and Atom Transfer Radical Polymerization. Journal of Macromolecular Science, Part A, 42(9), 1247–1257.

Chong, Y. K., Zainol, I., Ng, C. H., & Ooi, I. H. (2019). Miktoarm star polymers nanocarrier: synthesis, characterisation, and in-vitro drug release study. Journal of Polymer Research, 26(3), 79.

Cui, Y., Ma, X., Tang, X., & Luo, Y. (2004). Synthesis, characterization, and thermal stability of star-shaped poly(ε-caprolactone) with phosphazene core. European Polymer Journal, 40(2), 299–305.

de Freitas, A. G. O., Trindade, S. G., Muraro, P. I. R., Schmidt, V., Satti, A. J., Villar, M. A., Ciolino, A. E., & Giacomelli, C. (2013). Controlled One-Pot Synthesis of Polystyrene- block -Polycaprolactone Copolymers by Simultaneous RAFT and ROP. Macromolecular Chemistry and Physics, 214(20), 2336–2344.

Duro-Castano, A., Movellan, J., & Vicent, M. J. (2015). Smart branched polymer drug conjugates as nano-sized drug delivery systems. Biomaterials Science, 3(10), 1321–1334.

Dwivedi, R., Kumar, S., Pandey, R., Mahajan, A., Nandana, D., Katti, D. S., & Mehrotra, D. (2020). Polycaprolactone as biomaterial for bone scaffolds: Review of literature. Journal of Oral Biology and Craniofacial Research, 10(1), 381–388.

Gjerde, N., Zhu, K., Nyström, B., & Knudsen, K. D. (2018). Effect of PCL end-groups on the self-assembly process of Pluronic in aqueous media. Physical Chemistry Chemical Physics, 20(4), 2585–2596.

Hajilou, H., Farahpour, M. R., & Hamishehkar, H. (2020). Polycaprolactone nanofiber coated with chitosan and Gamma oryzanol functionalized as a novel wound dressing for healing infected wounds. International Journal of Biological Macromolecules, 164, 2358–2369.

Hatakeyama, T., Yamashita, S., & Hatakeyama, H. (2019). Thermal properties of lignin-based polycaprolactones. Journal of Thermal Analysis and Calorimetry.

Ismail, W., Daik, R., Abd Hamid, S., & Wan Abdul Khodir, W. K. (2019). Synthesis and Characterization of Star-Shaped (PCL-B-PEG) as Potential Electrospun Microfibers. Sains Malaysiana, 48(10), 2265–2275.

Izunobi, J. U., & Higginbotham, C. L. (2011). Polymer Molecular Weight Analysis by 1 H NMR Spectroscopy. Journal of Chemical Education, 88(8), 1098–1104.

Katritzky, A. R., Jain, R., Lomaka, A., Petrukhin, R., Maran, U., & Karelson, M. (2001). Perspective on the Relationship between Melting Points and Chemical Structure. Crystal Growth & Design, 1(4), 261–265.

Kelly, C. A., Harrison, K. L., Leeke, G. A., & Jenkins, M. J. (2013). Detection of melting point depression and crystallization of polycaprolactone (PCL) in scCO2 by infrared spectroscopy. Polymer Journal, 45(2), 188–192.

Kong, Y., & Hay, J. N. (2002). The measurement of the crystallinity of polymers by DSC. Polymer, 43(14), 3873–3878.

Kostka, L., Kotrchová, L., Šubr, V., Libánská, A., Ferreira, C. A., Malátová, I., Lee, H. J., Barnhart, T. E., Engle, J. W., Cai, W., Šírová, M., & Etrych, T. (2020). HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours. Biomaterials, 235, 119728.

Kostková, H., Schindler, L., Kotrchová, L., Kovář, M., Šírová, M., Kostka, L., & Etrych, T. (2017). Star Polymer-Drug Conjugates with pH-Controlled Drug Release and Carrier Degradation. Journal of Nanomaterials, 2017, 1–10.

Król-Morkisz, K., & Pielichowska, K. (2019). Thermal Decomposition of Polymer Nanocomposites With Functionalized Nanoparticles. In Polymer Composites with Functionalized Nanoparticles (pp. 405–435). Elsevier.

Labet, M., & Thielemans, W. (2009). Synthesis of polycaprolactone: a review. Chemical Society Reviews, 38(12), 3484.

Lee, K. S., & Chang, Y.-W. (2013). Thermal and mechanical properties of poly(ε-caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites. Polymer International, 62(1), 64–70.

Letchford, K., Zastre, J., Liggins, R., & Burt, H. (2004). Synthesis and micellar characterization of short block length methoxy poly(ethylene glycol)-block-poly(caprolactone) diblock copolymers. Colloids and Surfaces B: Biointerfaces, 32(2), 81–91.

Lotocki, V., & Kakkar, A. (2020). Miktoarm Star Polymers: Branched Architectures in Drug Delivery. Pharmaceutics, 12(9), 827.

Maglio, G., Nese, G., Nuzzo, M., & Palumbo, R. (2004). Synthesis and Characterization of Star-Shaped Diblock Poly(ɛ-caprolactone)/Poly(ethylene oxide) Copolymers. Macromolecular Rapid Communications, 25(12), 1139–1144.

Manjunath Kamath, S., Subha Krishna, R., Jaison, D., Sridhar, K., Kasthuri, N., Gopinath, V., Sivaperumal, P., & Shantanu Patil, S. (2020). Melatonin delivery from PCL scaffold enhances glycosaminoglycans deposition in human chondrocytes – Bioactive scaffold model for cartilage regeneration. Process Biochemistry, 99, 36–47.

Michalski, A., Brzezinski, M., Lapienis, G., & Biela, T. (2019). Star-shaped and branched polylactides: Synthesis, characterization, and properties. Progress in Polymer Science, 89, 159–212.

Nabid, M. R., Tabatabaei Rezaei, S. J., Sedghi, R., Niknejad, H., Entezami, A. A., Oskooie, H. A., & Heravi, M. M. (2011). Self-assembled micelles of well-defined pentaerythritol-centered amphiphilic A4B8 star-block copolymers based on PCL and PEG for hydrophobic drug delivery. Polymer, 52(13), 2799–2809.

Nagiah, N., Murdock, C. J., Bhattacharjee, M., Nair, L., & Laurencin, C. T. (2020). Development of Tripolymeric Triaxial Electrospun Fibrous Matrices for Dual Drug Delivery Applications. Scientific Reports, 10(1), 609.

Oledzka, E., Kaliszewska, D., Sobczak, M., Raczak, A., Nickel, P., & Kolodziejski, W. (2012). Synthesis and Properties of a Star-Shaped Poly( ϵ -Caprolactone)–Ibuprofen Conjugate. Journal of Biomaterials Science, Polymer Edition, 23(16), 2039–2054.

Sánchez-Soto, P., Ginés, J., Arias, M., Novák, C., & Ruiz-Conde, A. (2004). Effect of Molecular Mass on the Melting Temperature, Enthalpy and Entropy of Hydroxy-Terminated PEO. Journal of Thermal Analysis and Calorimetry, 67(1).

Rajisha, K. R., Deepa, B., Pothan, L. A., & Thomas, S. (2011). Thermomechanical and spectroscopic characterization of natural fibre composites. In Interface Engineering of Natural Fibre Composites for Maximum Performance (pp. 241–274). Elsevier.

Ren, J. M., McKenzie, T. G., Fu, Q., Wong, E. H. H., Xu, J., An, Z., Shanmugam, S., Davis, T. P., Boyer, C., & Qiao, G. G. (2016). Star Polymers. Chemical Reviews, 116(12), 6743–6836.

Ren, T.-B., Feng, Y., Zhang, Z.-H., Li, L., & Li, Y.-Y. (2011). Shell-sheddable Micelles Based on Star-shaped Poly(ε-caprolactone)-SS-poly(ethyl glycol) Copolymer for Intracellular Drug Release. The Royal Society of Chemistry.

Shadi, L., Karimi, M., Ramazani, S., & Entezami, A. A. (2014). Preparation of electrospun nanofibers of star-shaped polycaprolactone and its blends with polyaniline. Journal of Materials Science, 49(14), 4844–4854.

Shawe, J., Riesen, R., Widmann, J., & Schubnell, M. (2000). Interpreting DSC Curves. Mettler Toledo, 1–28.

Stassin, F., & Jérôme, R. (2003). Effect of pressure and temperature upon tin alkoxide-promoted ring-opening polymerisation of ɛ-caprolactone in supercritical carbon dioxide. Chemical Communications, (2), 232–233.

Sulistio, A., Gurr, P. A., Blencowe, A., & Qiao, G. G. (2012). Peptide-Based Star Polymers: The Rising Star in Functional Polymers. Australian Journal of Chemistry, 65(8), 978.

Szymańska, E., & Winnicka, K. (2015). Stability of Chitosan-A Challenge for Pharmaceutical and Biomedical Applications. Marine Drugs, 13(4), 1819–1846.

Tinajero-Díaz, E., Guerrero-Ramírez, L. G., Manríquez-González, R., Martínez-Richa, A., & Nuño-Donlucas, S. M. (2014). Star-Shaped Poly(ɛ-caprolactone)-co-poly(ethylene glycol) Synthesized with Oxalyl Chloride as Linker Molecule. Journal of Macromolecular Science, Part A, 51(6), 499–510.

Wang, J.-L., & Dong, C.-M. (2006). Physical properties, crystallization kinetics, and spherulitic growth of well-defined poly(ε-caprolactone)s with different arms. Polymer, 47(9), 3218–3228.

Wang, L., Cai, C., & Dong, C.-M. (2008). Synthesis, Characterization and Nanoparticle Formation of Star-Shaped Poly(L-Lactide) with Six Arms. Chinese Journal of Polymer Science, 26(02), 161.

Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer-Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217–1256.

Wu, W., Wang, W., & Li, J. (2015, July 1). Star polymers: Advances in biomedical applications. Progress in Polymer Science. Elsevier Ltd.

Xiao, N.-Y., Zhang, X.-Q., Ma, X.-Y., Luo, W.-H., Li, H.-Q., Zeng, Q.-Y., Zhong, L., & Zhao, W.-H. (2020). Construction of EVA/chitosan based PEG-PCL micelles nanocomposite films with controlled release of iprodione and its application in pre-harvest treatment of grapes. Food Chemistry, 331, 127277.

Yang, D.-P., Oo, M. N. N. L., Deen, G. R., Li, Z., & Loh, X. J. (2017). Nano-Star-Shaped Polymers for Drug Delivery Applications. Macromolecular Rapid Communications, 38(21), 1700410.

Zhang, Y., Zhao, Q., Shao, H., Zhang, S., & Han, X. (2014). Synthesis and Characterization of Star-Shaped Block Copolymer sPCL-b-PEG-GA. Advances in Materials Science and Engineering, 2014, 1–6.

Zhu, G., Wang, K., Qin, H., Zhao, X., Chen, W., Xu, L., Cao, W., & Guo, H. (2020). Internal cross-linked polymeric nanoparticles with dual sensitivity for combination therapy of muscle-invasive bladder cancer. Journal of Nanobiotechnology, 18(1), 124.

Downloads

Published

2021-04-30

Issue

Section

Archives