A brief overview on finite element analysis for mechanics of proton exchange membrane fuel cell

Authors

  • Abdul Muhaimin Abdul Aziz School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Ng Wei Shi Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
  • Rozan Mohamad Yunus Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
  • Mohd Afzan Mohd Anuar School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA Shah Alam, Selangor Darul Ehsan

DOI:

https://doi.org/10.24191/mjcet.v7i2.1202

Keywords:

Hydrogen energy, Proton exchange membrane fuel cells, Finite element analysis, Clamping pressure, Optimisation

Abstract

Hydrogen energy is an ideal alternative for energy-intensive industrial processes, long-distance transportation, and enabling the integration of decentralized renewable energy sources like solar and wind power. Many countries have implemented strategies for the development of hydrogen energy. Proton exchange membrane fuel cells (PEMFC) are a highly efficient hydrogen conversion technology that can be utilised in a variety of applications, including backup power systems, portable electronics, and transportation, due to its high-power density and simple architecture. Finite element analysis (FEA) is a prominent numerical tool to simulate and to predict the mechanical behaviour of PEMFC under operating conditions. The main goal of this paper is to conduct a review on the utilisation of FEA in improving the performance of PEMFC. The FEA utilisation to evaluate the geometrical design of PEMFC end plate is first discussed, followed by fatigue life of PEMFC stack. Finally, the design optimisation of PEMFC performed in various investigations is also reported. Well validated FEA is found to be a powerful tool to evaluate the mechanics of PEMFC. It can be integrated with modern optimisation methods to improve the performance of PEMFC.

References

Alizadeh, E., Barzegari, M. M., Momenifar, M., Ghadimi, M., & Saadat, S. H. M. (2016). Investigation of contact pressure distribution over the active area of PEM fuel cell stack. International Journal of Hydrogen Energy, 41(4), 3062–3071. https://doi.org/10.1016/j.ijhydene.2015.12.057

Arvay, A., French, J., Wang, J.-C., Peng, X.-H., & Kannan, A. M. (2013). Nature inspired flow field designs for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 38(9), 3717–3726. https://doi.org/10.1016/j.ijhydene.2012.12.149

Asghari, S., Shahsamandi, M. H., & Ashraf Khorasani, M. R. (2010). Design and manufacturing of end plates of a 5 kW PEM fuel cell. International Journal of Hydrogen Energy, 35(17), 9291–9297. https://doi.org/10.1016/j.ijhydene.2010.02.135

Basava, S., & Hess, D. P. (1998). Bolted joint clamping force variation due to axial vibration. Journal of Sound and Vibration, 210(2), 255–265. https://doi.org/10.1006/jsvi.1997.1330

Bates, A., Mukherjee, S., Hwang, S., Lee, S. C., Kwon, O., Choi, G. H., & Park, S. (2013). Simulation and experimental analysis of the clamping pressure distribution in a PEM fuel cell stack. International Journal of Hydrogen Energy, 38(15), 6481–6493. https://doi.org/10.1016/j.ijhydene.2013.03.049

Boddu, R., Marupakula, U. K., Summers, B., & Majumdar, P. (2009). Development of bipolar plates with different flow channel configurations for fuel cells. Journal of Power Sources, 189(2), 1083–1092. https://doi.org/10.1016/j.jpowsour.2008.12.156

Crum, M., & Liu, W. (2006). Effective Testing Matrix for Studying Membrane Durability in PEM Fuel Cells: Part 2. Mechanical Durability and Combined Mechanical and Chemical Durability. ECS Transactions, 3(1), 541. https://doi.org/10.1149/1.2356175

Dey, T., Deshpande, J., Singdeo, D., & Ghosh, P. C. (2019). Study of PEM Fuel Cell End Plate Design by Structural Analysis Based on Contact Pressure. Journal of Energy, 2019, e3821082. https://doi.org/10.1155/2019/3821082

Habibnia, M., Shirkhani, M., & Tamami, P. G. (2020). Optimization of proton exchange membrane fuel cell’s end plates. SN Applied Sciences, 2(8), 1380. https://doi.org/10.1007/s42452-020-3177-2

Jiang, Y., Zhang, M., Park, T.-W., & Lee, C.-H. (2004). An Experimental Study of Self-Loosening of Bolted Joints. Journal of Mechanical Design, 126(5), 925–931. https://doi.org/10.1115/1.1767814

Jo, M., Cho, H.-S., & Na, Y. (2020). Comparative Analysis of Circular and Square End Plates for a Highly Pressurized Proton Exchange Membrane Water Electrolysis Stack. Applied Sciences, 10(18), Article 18. https://doi.org/10.3390/app10186315

Khatir, F. A., Barzegari, M. M., Talebi-Ghadikolaee, H., & Seddighi, S. (2021). Integration of design of experiment and finite element method for the study of geometrical parameters in metallic bipolar plates for PEMFCs. International Journal of Hydrogen Energy, 46(79), 39469–39482. https://doi.org/10.1016/j.ijhydene.2021.09.161

Khattra, N. S., Karlsson, A. M., Santare, M. H., Walsh, P., & Busby, F. C. (2012). Effect of time-dependent material properties on the mechanical behavior of PFSA membranes subjected to humidity cycling. Journal of Power Sources, 214, 365–376. https://doi.org/10.1016/j.jpowsour.2012.04.065

Kusoglu, A., Karlsson, A. M., Santare, M. H., Cleghorn, S., & Johnson, W. B. (2007). Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses. Journal of Power Sources, 170(2), 345–358. https://doi.org/10.1016/j.jpowsour.2007.03.063

Kusoglu, A., Santare, M. H., & Karlsson, A. M. (2011). Aspects of fatigue failure mechanisms in polymer fuel cell membranes. Journal of Polymer Science Part B: Polymer Physics, 49(21), 1506–1517. https://doi.org/10.1002/polb.22336

Lee, W., Ho, C.-H., Van Zee, J. W., & Murthy, M. (1999). The effects of compression and gas diffusion layers on the performance of a PEM fuel cell. Journal of Power Sources, 84(1), 45–51. https://doi.org/10.1016/S0378-7753(99)00298-0

Li, X., & Sabir, I. (2005). Review of bipolar plates in PEM fuel cells: Flow-field designs. International Journal of Hydrogen Energy, 30(4), 359–371. https://doi.org/10.1016/j.ijhydene.2004.09.019

Lim, C., Ghassemzadeh, L., Van Hove, F., Lauritzen, M., Kolodziej, J., Wang, G. G., Holdcroft, S., & Kjeang, E. (2014). Membrane degradation during combined chemical and mechanical accelerated stress testing of polymer electrolyte fuel cells. Journal of Power Sources, 257, 102–110. https://doi.org/10.1016/j.jpowsour.2014.01.106

Lin, P., Zhou, P., & Wu, C. W. (2010). A high efficient assembly technique for large proton exchange membrane fuel cell stacks: Part II. Applications. Journal of Power Sources, 195(5), 1383–1392. https://doi.org/10.1016/j.jpowsour.2009.09.038

Liu, B., Wei, M. Y., Liu, L. F., & Wu, C. W. (2017). Fatigue Life Analysis of the Proton Exchange Membrane Fuel Cell Stack. Fuel Cells, 17(5), 682–689. https://doi.org/10.1002/fuce.201600198

M.H. Khorasany, R., Sadeghi Alavijeh, A., Kjeang, E., Wang, G. G., & Rajapakse, R. K. N. D. (2015). Mechanical degradation of fuel cell membranes under fatigue fracture tests. Journal of Power Sources, 274, 1208–1216. https://doi.org/10.1016/j.jpowsour.2014.10.135

Marappan, M., Palaniswamy, K., Velumani, T., Chul, K. B., Velayutham, R., Shivakumar, P., & Sundaram, S. (2021). Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs – Review. The Chemical Record, 21(4), 663–714. https://doi.org/10.1002/tcr.202000138

Qiu, D., Peng, L., Liang, P., Yi, P., & Lai, X. (2018). Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells. Energy, 165, 210–222. https://doi.org/10.1016/j.energy.2018.09.136

Qiu, D., Peng, L., Yi, P., Lehnert, W., & Lai, X. (2021). Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design. Renewable and Sustainable Energy Reviews, 152, 111660. https://doi.org/10.1016/j.rser.2021.111660

Rajalakshmi, N., Pandian, S., & Dhathathreyan, K. S. (2009). Vibration tests on a PEM fuel cell stack usable in transportation application. International Journal of Hydrogen Energy, 34(9), 3833–3837. https://doi.org/10.1016/j.ijhydene.2009.03.002

Ren, P., Pei, P., Li, Y., Wu, Z., Chen, D., & Huang, S. (2020). Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Progress in Energy and Combustion Science, 80, 100859. https://doi.org/10.1016/j.pecs.2020.100859

Shimizu, R., Tsuji, J., Sato, N., Takano, J., Itami, S., Kusakabe, M., Miyatake, K., Iiyama, A., & Uchida, M. (2017). Durability and degradation analysis of hydrocarbon ionomer membranes in polymer electrolyte fuel cells accelerated stress evaluation. Journal of Power Sources, 367, 63–71. https://doi.org/10.1016/j.jpowsour.2017.09.025

Wallnöfer-Ogris, E., Poimer, F., Köll, R., Macherhammer, M.-G., & Trattner, A. (2024). Main degradation mechanisms of polymer electrolyte membrane fuel cell stacks – Mechanisms, influencing factors, consequences, and mitigation strategies. International Journal of Hydrogen Energy, 50, 1159–1182. https://doi.org/10.1016/j.ijhydene.2023.06.215

Wang, Y. X., Guo, X., Fang, C., Shi, S. W., Weng, G. J., & Chen, G. (2024). Fatigue crack growth behavior of proton exchange membrane in fuel cells under humidity cycling. Journal of Power Sources, 597, 234074. https://doi.org/10.1016/j.jpowsour.2024.234074

Wu, C.-W., Liu, B., Wei, M.-Y., & Zhang, W. (2015). Mechanical Response of a Large Fuel Cell Stack to Impact: A Numerical Analysis. Fuel Cells, 15(2), 344–351. https://doi.org/10.1002/fuce.201400153

Yan, X., Lin, C., Zheng, Z., Chen, J., Wei, G., & Zhang, J. (2020). Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression. Applied Energy, 258, 114073. https://doi.org/10.1016/j.apenergy.2019.114073

Zhang, L., Liu, Y., Song, H., Wang, S., Zhou, Y., & Hu, S. J. (2006). Estimation of contact resistance in proton exchange membrane fuel cells. Journal of Power Sources, 162(2), 1165–1171. https://doi.org/10.1016/j.jpowsour.2006.07.070

Zhang, Y., Gao, Z., Wei, L., & Su, J. (2023). Improving the Performance of PEM Fuel Cells: Form a Patterned Hydrophobic Catalyst Layer. Journal of The Electrochemical Society, 170(5), 054508. https://doi.org/10.1149/1945-7111/acd583

Zhou, P., Wu, C. W., & Ma, G. J. (2007). Influence of clamping force on the performance of PEMFCs. Journal of Power Sources, 163(2), 874–881. https://doi.org/10.1016/j.jpowsour.2006.09.068

Downloads

Published

2024-10-31

How to Cite

Abdul Aziz, A. M. ., Wei Shi, N. ., Mohamad Yunus, R. ., & Mohd Anuar, M. A. (2024). A brief overview on finite element analysis for mechanics of proton exchange membrane fuel cell . Malaysian Journal of Chemical Engineering &Amp; Technology, 7(2), 195–204. https://doi.org/10.24191/mjcet.v7i2.1202