Optimising of operation conditions for carbon nanotube production using pyrolysis coupled with catalytic chemical vapor deposition
DOI:
https://doi.org/10.24191/mjcet.v7i2.1254Keywords:
Sewage Sludge, Carbon nanotube, Catalytic chemical vapour deposition, Response surface methodologyAbstract
Sewage sludge holds great potential for producing carbon nanotubes (CNTs) due to their abundance, renewability, and low-cost carbon source. The objective of this study is to investigate the production of CNTs through two-stage processes i.e. pyrolysis and catalytic chemical vapor deposition (CCVD) of sewage sludge-derived vapor. The central composite design (CCD) model of response surface methodology (RSM) was conducted to predict and optimise the yield of CNTs from sewage sludge vapour. The statistical results indicate that the optimal conditions are a catalyst loading of 0.5 and a temperature of 800 °C. The catalyst loading has the greatest impact on CNTs yield, as evidenced by the F-value in the ANOVA. The actual CNTs yield under these optimal conditions was 30.53%, which is in close agreement with the predicted value of 33.60%. A quadratic model was employed to investigate the relationship between temperature and catalyst load on the deposition yield of CNTs. The CNTs were then characterised using Raman Spectroscopy, X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscopy (TEM). The optimised CNTs had an outer diameter of 25.2 nm, and inner diameters of 3.2 nm. This research contributes to the advancement of the CNTs production from sewage sludge.
References
Abdullah, H. B., Ramli, I., Ismail, I., & Yusof, N. A. (2017). Hydrocarbon sources for the carbon nanotubes production by chemical vapour deposition: A review. Pertanika Journal of Science and Technology, 25(2), 379–396.
Aboul-Enein, A. A., Arafa, E. I., Abdel-Azim, S. M., & Awadallah, A. E. (2021). Synthesis of multiwalled carbon nanotubes from polyethylene waste to enhance the rheological behavior of lubricating grease. Fullerenes Nanotubes and Carbon Nanostructures, 29(1), 46–57. https://doi.org/10.1080/1536383X.2020.1806828
Aboul-enein, A. A., Awadallah, A. E., El-desouki, D. S., & Aboul-gheit, N. A. k. (2021). Catalytic pyrolysis of sugarcane bagasse by zeolite catalyst for the production of multi-walled carbon nanotubes. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 49(10), 1421–1434. https://doi.org/10.1016/S1872-5813(21)60127-5
Ahmad, M., & Silva, S. R. P. (2020). Low temperature growth of carbon nanotubes – A review. Carbon, 158, 24–44. https://doi.org/10.1016/j.carbon.2019.11.061
Aljumaily, M. M., Alsaadi, M. A., Das, R., Abd Hamid, S. B., Hashim, N. A., AlOmar, M. K., Alayan, H. M., Novikov, M., Alsalhy, Q. F., & Hashim, M. A. (2018). Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-21051-3
Allaedini, G., Aminayi, P., & Tasirin, S. M. (2016). Methane decomposition for carbon nanotube production: Optimization of the reaction parameters using response surface methodology. Chemical Engineering Research and Design, 112, 163–174. https://doi.org/10.1016/j.cherd.2016.06.010
Arazo, R. O., Genuino, D. A. D., de Luna, M. D. G., & Capareda, S. C. (2017). Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor. Sustainable Environment Research, 27(1), 7–14. https://doi.org/10.1016/j.serj.2016.11.010
Aziz, A., Maryam, M., & Shamsudin, M. S. (2012). CVD growth of carbon nanotubes from palm oil precursor. May 2014. https://doi.org/10.1109/ISBEIA.2012.6422908
Belonogov, E. K., Kushev, S. B., Soldatenko, S. A., & Turaeva, T. L. (2021). Morphology and structure characteristics of nanoscale carbon materials containing graphene. Journal of Advanced Materials and Technologies, 6(4), 247–255. https://doi.org/10.17277/jamt.2021.04.pp.247-255
Bîru, E. I., & Iovu, H. (2018). Graphene nanocomposites studied by Raman spectroscopy. Raman Spectroscopy, 9, 179. https://doi.org/10.5772/intechopen.73487
Boufades, D., Hammadou Née Mesdour, S., Moussiden, A., Benmebrouka, H., Ghouti, M., & Kaddour, O. (2022). Optimization of carbon nanotubes synthesis via pyrolysis over Ni/Al2O3 using response surface methodology. Fullerenes Nanotubes and Carbon Nanostructures, 30(4), 467–475. https://doi.org/10.1080/1536383X.2021.1956475
Das, R., Hamid, S., Ali, M., Ramakrishna, S., & Yongzhi, W. (2014). Carbon Nanotubes Characterization by X-ray Powder Diffraction – A Review. Current Nanoscience, 11(1), 23–35. https://doi.org/10.2174/1573413710666140818210043
Dündar-Tekkaya, E., & Karatepe, N. (2015). Investigation of the Effect of Reaction Time, Weight Ratio, and Type of Catalyst on the Yield of Multi-Wall Carbon Nanotubes via Chemical Vapor Deposition of Acetylene. Fullerenes Nanotubes and Carbon Nanostructures, 23(10), 853–859. https://doi.org/10.1080/1536383X.2015.1010641
Dutta, S. D., Patel, D. K., & Lim, K. (2020). Chapter 21 - Carbon nanotube-based nanohybrids for agricultural and biological applications. In Multifunctional Hybrid Nanomaterials for Sustainable Agri-food and Ecosystems. Elsevier Inc. https://doi.org/10.1016/B978-0-12-821354-4.00021-2
Gupta, N., Gupta, S. M., & Sharma, S. K. (2019). Carbon nanotubes: synthesis, properties and engineering applications. Carbon Letters, June 2020. https://doi.org/10.1007/s42823-019-00068-2
Henao, W., Cazaña, F., Tarifa, P., Romeo, E., Latorre, N., Sebastian, V., Delgado, J. J., & Monzón, A. (2021). Selective synthesis of carbon nanotubes by catalytic decomposition of methane using Co-Cu/cellulose derived carbon catalysts: A comprehensive kinetic study. Chemical Engineering Journal, 404, 126103. https://doi.org/10.1016/j.cej.2020.126103
Hernadi, K., Fonseca, A., Nagy, J. B., Siska, A., & Kiricsi, I. (2000). Production of nanotubes by the catalytic decomposition of different carbon-containing compounds. Applied Catalysis A: General, 199(2), 245–255. https://doi.org/10.1016/S0926-860X(99)00561-X
Hou, P. X., Du, J., Liu, C., Ren, W., Kauppinen, E. I., & Cheng, H. M. (2017). Applications of carbon nanotubes and graphene produced by chemical vapor deposition. MRS Bulletin, 42(11), 825–831. https://doi.org/10.1557/mrs.2017.238
Hsu, C. Y., Rheima, A. M., Mohammed, M. S., Kadhim, M. M., Mohammed, S. H., Abbas, F. H., Abed, Z. T., Mahdi, Z. M., Abbas, Z. S., Hachim, S. K., Ali, F. K., Mahmoud, Z. H., & kianfar, E. (2023). Application of Carbon Nanotubes and Graphene-Based Nanoadsorbents in Water Treatment. BioNanoScience. https://doi.org/10.1007/s12668-023-01175-1
Hussein, M. Z., Jaafar, A. M., & Yahaya, A. H. (2014). Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH. International Journal of Molecular Sciences, 15(11), 20254–20265. https://doi.org/10.3390/ijms151120254
Jalil, M. J., Rasnan, N. H. A., Yamin, A. F. M., Zaini, M. S. M., Morad, N., Azmi, I. S., Mahadi, M. B., & Yeop, M. Z. (2022). Optimization of Epoxidation Palm-Based Oleic Acid To Produce Polyols. Chemistry and Chemical Technology, 16(1), 66–73. https://doi.org/10.23939/chcht16.01.066
Kirby, E. D. (2006). A parameter design study in a turning operation using the Taguchi method. The technology interface, 1-14.
Kumar, M., & Ando, Y. (2010). Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. Journal of Nanoscience and Nanotechnology, 10(6), 3739–3758. https://doi.org/10.1166/jnn.2010.2939
Li, W. Z., Wen, J. G., & Ren, Z. F. (2002). Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Applied Physics A: Materials Science and Processing, 74(3), 397–402. https://doi.org/10.1007/s003390201284
Lim, X.-X., Low, S.-C., & Oh, W.-D. (2023). A critical review of heterogeneous catalyst design for carbon nanotubes synthesis: Functionalities, performances, and prospects. Fuel Processing Technology, 241, 107624. https://doi.org/10.1016/j.fuproc.2022.107624
Liu, Y., Zhai, Y., Li, S., Liu, X., Liu, X., Wang, B., Qiu, Z., & Li, C. (2020). Production of bio-oil with low oxygen and nitrogen contents by combined hydrothermal pretreatment and pyrolysis of sewage sludge. Energy, 203, 117829. https://doi.org/10.1016/j.energy.2020.117829
Lobiak, E. V., Kuznetsova, V. R., Flahaut, E., Okotrub, A. V., & Bulusheva, L. G. (2020). Effect of Co-Mo catalyst preparation and CH4/H2 flow on carbon nanotube synthesis. Fullerenes Nanotubes and Carbon Nanostructures, 28(9), 707–715. https://doi.org/10.1080/1536383X.2020.1749051
Lv, X., Zhang, T., Luo, Y., Zhang, Y., Wang, Y., & Zhang, G. (2020). Study on carbon nanotubes and activated carbon hybrids by pyrolysis of coal. Journal of Analytical and Applied Pyrolysis, 146, 104717. https://doi.org/10.1016/j.jaap.2019.104717
Makgabutlane, B., Nthunya, L. N., Maubane-Nkadimeng, M. S., & Mhlanga, S. D. (2021). Green synthesis of carbon nanotubes to address the water-energy-food nexus: A critical review. Journal of Environmental Chemical Engineering, 9(1), 104736. https://doi.org/10.1016/j.jece.2020.104736
Manawi, Y. M., Ihsanullah, Samara, A., Al-Ansari, T., & Atieh, M. A. (2018). A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials, 11(5). https://doi.org/10.3390/ma11050822
Mazumder, S., Sarkar, N., Park, J. G., & Kim, I. J. (2015). A novel processing technique for CNTs growth on Co-supported molecular sieve coated porous ceramics. Materials Letters, 161, 212–215. https://doi.org/10.1016/j.matlet.2015.08.097
Ming, H., Peiling, D., Yunlong, Z., Jing, G., & Xiaoxue, R. (2016). Effect of Reaction Temperature on Carbon Yield and Morphology of CNTs on Copper Loaded Nickel Nanoparticles, Journal of Nanomaterials, 2016, 106845. https://doi.org/10.1155/2016/8106845
Mohammadian, N., Ghoreishi, S. M., Hafeziyeh, S., Saeidi, S., & Dionysiou, D. D. (2018). Optimization of synthesis conditions of carbon nanotubes via ultrasonic-assisted floating catalyst deposition using response surface methodology. Nanomaterials, 8(5), 1–14. https://doi.org/10.3390/nano8050316
Mohd Ghazali, M. S., Md Zaini, M. S., Arshad, M., & Syed-Hassan, S. S. A. (2024). Co-production of biochar and carbon nanotube from sewage sludge in a two-stage process coupling pyrolysis and catalytic chemical vapor deposition. Waste Disposal & Sustainable Energy, 6, 323–334. https://doi.org/10.1007/s42768-024-00194-2
Naqvi, S. R., Tariq, R., Hameed, Z., Ali, I., Naqvi, M., Chen, W.-H., Ceylan, S., Rashid, H., Ahmad, J., & Taqvi, S. A. (2019). Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method. Renewable Energy, 131, 854–860. https://doi.org/10.1016/j.renene.2018.07.094
Ping, W., & Wang, J. (2016). Comprehensive characterisation of sewage sludge for thermochemical conversion processes – Based on Singapore survey. Waste Management, 54, 131–142. https://doi.org/10.1016/j.wasman.2016.04.038
Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V., & Kizek, R. (2011). Methods for carbon nanotubes synthesis - Review. Journal of Materials Chemistry, 21(40), 15872–15884. https://doi.org/10.1039/c1jm12254a
Roslan, S. Z., Zainudin, S. F., Aris, A. M., Chin, K. B., Musa, M., Rafizan, A., Daud, M., Shatir, S., & Hassan, A. S. (2023). Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel : Influences of Process Conditions on the Energetic Properties of Hydrochar. Energies, 16, 2483. https://doi.org/10.3390/en16052483
Shah, K. A., & Tali, B. A. (2016). Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing, 41, 67–82. https://doi.org/10.1016/j.mssp.2015.08.013
Shahbeig, H., & Nosrati, M. (2020). Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-`socio-economic assessment. Renewable and Sustainable Energy Reviews, 119, 109567. https://doi.org/10.1016/j.rser.2019.109567
Paul, S., Mondal, S., Saha, A., & Roy, S. (2023). Fundamentals and functionalization of CNTs and other carbon nanomaterials. Micro and Nano Technologies, 77–90. https://doi.org/10.1016/B978-0-12-824366-4.00008-X
Syed-Hassan, S. S. A., Wang, Y., Hu, S., Su, S., & Xiang, J. (2017). Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renewable and Sustainable Energy Reviews, 80, 888–913. https://doi.org/10.1016/j.rser.2017.05.262
Wang, C., Chang, J., Amatosa, T., Guo, Y., Lin, F., & Yen, Y. (2018). Carbon Nanotubes Grown Using Solid Polymer Chemical Vapor Deposition in a Fluidized Bed Reactor with Iron(III) Nitrate, Iron(III) Chloride and Nickel(II) Chloride Catalysts. Inventions, 3(1), 18. https://doi.org/10.3390/inventions3010018
Wang, J., Shen, B., Lan, M., Kang, D., & Wu, C. (2020). Carbon nanotubes (CNTs) production from catalytic pyrolysis of waste plastics: The influence of catalyst and reaction pressure. Catalysis Today, 351, 50–57. https://doi.org/10.1016/j.cattod.2019.01.058
Yu, Z., Chen, D., Tøtdal, B., & Holmen, A. (2005). Effect of catalyst preparation on the carbon nanotube growth rate. Catalysis Today, 100(3–4), 261–267. https://doi.org/10.1016/j.cattod.2004.09.060
Zaini, M. S. M., & Jalil, M. J. (2021). A Preliminary Study of the Sustainability of Oil Palm Biomass as Feedstock: Performance and Challenges of the Gasification Technology in Malaysia. Kem. Ind., 70(11–12), 717–728. https://doi.org/10.15255/kui.2020.077
Zhang, S., Qian, L., Zhao, Q., Wang, Z., Lin, D., & Liu, W. (2020). Carbon nanotube : Controlled synthesis determines its future. Sci. China Mater. 63, 16–34. https://doi.org/10.1007/s40843-019-9581-4
Zhang, Y. S., Zhu, H. L., Yao, D., Williams, P. T., Wu, C., Xu, D., Hu, Q., Manos, G., Yu, L., Zhao, M., Shearing, P. R., & Brett, D. J. L. (2021). Thermo-chemical conversion of carbonaceous wastes for CNT and hydrogen production: A review. Sustainable Energy and Fuels, 5(17), 4173–4208. https://doi.org/10.1039/d1se00619c
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mohd Syazwan Mohd Ghazali, Mohd Saufi Md Zaini, Siti Zaharah Roslan, Syed Shatir A. Syed-Hassan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.