Optimising of operation conditions for carbon nanotube production using pyrolysis coupled with catalytic chemical vapor deposition

Authors

  • Mohd Syazwan Mohd Ghazali Section of Environmental Engineering, Universiti Kuala Lumpur, Malaysia Institute of Chemical and Bioengineering, 78000 Alor Gajah, Melaka, Malaysia and School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Mohd Saufi Md Zaini Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA Cawangan Terengganu, Kampus Bukit Besi, 23200 Dungun, Terengganu, Malaysia
  • Siti Zaharah Roslan School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Syed Shatir A. Syed-Hassan School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.24191/mjcet.v7i2.1254

Keywords:

Sewage Sludge, Carbon nanotube, Catalytic chemical vapour deposition, Response surface methodology

Abstract

Sewage sludge holds great potential for producing carbon nanotubes (CNTs) due to their abundance, renewability, and low-cost carbon source. The objective of this study is to investigate the production of CNTs through two-stage processes i.e. pyrolysis and catalytic chemical vapor deposition (CCVD) of sewage sludge-derived vapor. The central composite design (CCD) model of response surface methodology (RSM) was conducted to predict and optimise the yield of CNTs from sewage sludge vapour. The statistical results indicate that the optimal conditions are a catalyst loading of 0.5 and a temperature of 800 °C. The catalyst loading has the greatest impact on CNTs yield, as evidenced by the F-value in the ANOVA. The actual CNTs yield under these optimal conditions was 30.53%, which is in close agreement with the predicted value of 33.60%. A quadratic model was employed to investigate the relationship between temperature and catalyst load on the deposition yield of CNTs. The CNTs were then characterised using Raman Spectroscopy, X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscopy (TEM). The optimised CNTs had an outer diameter of 25.2 nm, and inner diameters of 3.2 nm. This research contributes to the advancement of the CNTs production from sewage sludge.

References

Abdullah, H. B., Ramli, I., Ismail, I., & Yusof, N. A. (2017). Hydrocarbon sources for the carbon nanotubes production by chemical vapour deposition: A review. Pertanika Journal of Science and Technology, 25(2), 379–396.

Aboul-Enein, A. A., Arafa, E. I., Abdel-Azim, S. M., & Awadallah, A. E. (2021). Synthesis of multiwalled carbon nanotubes from polyethylene waste to enhance the rheological behavior of lubricating grease. Fullerenes Nanotubes and Carbon Nanostructures, 29(1), 46–57. https://doi.org/10.1080/1536383X.2020.1806828

Aboul-enein, A. A., Awadallah, A. E., El-desouki, D. S., & Aboul-gheit, N. A. k. (2021). Catalytic pyrolysis of sugarcane bagasse by zeolite catalyst for the production of multi-walled carbon nanotubes. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 49(10), 1421–1434. https://doi.org/10.1016/S1872-5813(21)60127-5

Ahmad, M., & Silva, S. R. P. (2020). Low temperature growth of carbon nanotubes – A review. Carbon, 158, 24–44. https://doi.org/10.1016/j.carbon.2019.11.061

Aljumaily, M. M., Alsaadi, M. A., Das, R., Abd Hamid, S. B., Hashim, N. A., AlOmar, M. K., Alayan, H. M., Novikov, M., Alsalhy, Q. F., & Hashim, M. A. (2018). Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-21051-3

Allaedini, G., Aminayi, P., & Tasirin, S. M. (2016). Methane decomposition for carbon nanotube production: Optimization of the reaction parameters using response surface methodology. Chemical Engineering Research and Design, 112, 163–174. https://doi.org/10.1016/j.cherd.2016.06.010

Arazo, R. O., Genuino, D. A. D., de Luna, M. D. G., & Capareda, S. C. (2017). Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor. Sustainable Environment Research, 27(1), 7–14. https://doi.org/10.1016/j.serj.2016.11.010

Aziz, A., Maryam, M., & Shamsudin, M. S. (2012). CVD growth of carbon nanotubes from palm oil precursor. May 2014. https://doi.org/10.1109/ISBEIA.2012.6422908

Belonogov, E. K., Kushev, S. B., Soldatenko, S. A., & Turaeva, T. L. (2021). Morphology and structure characteristics of nanoscale carbon materials containing graphene. Journal of Advanced Materials and Technologies, 6(4), 247–255. https://doi.org/10.17277/jamt.2021.04.pp.247-255

Bîru, E. I., & Iovu, H. (2018). Graphene nanocomposites studied by Raman spectroscopy. Raman Spectroscopy, 9, 179. https://doi.org/10.5772/intechopen.73487

Boufades, D., Hammadou Née Mesdour, S., Moussiden, A., Benmebrouka, H., Ghouti, M., & Kaddour, O. (2022). Optimization of carbon nanotubes synthesis via pyrolysis over Ni/Al2O3 using response surface methodology. Fullerenes Nanotubes and Carbon Nanostructures, 30(4), 467–475. https://doi.org/10.1080/1536383X.2021.1956475

Das, R., Hamid, S., Ali, M., Ramakrishna, S., & Yongzhi, W. (2014). Carbon Nanotubes Characterization by X-ray Powder Diffraction – A Review. Current Nanoscience, 11(1), 23–35. https://doi.org/10.2174/1573413710666140818210043

Dündar-Tekkaya, E., & Karatepe, N. (2015). Investigation of the Effect of Reaction Time, Weight Ratio, and Type of Catalyst on the Yield of Multi-Wall Carbon Nanotubes via Chemical Vapor Deposition of Acetylene. Fullerenes Nanotubes and Carbon Nanostructures, 23(10), 853–859. https://doi.org/10.1080/1536383X.2015.1010641

Dutta, S. D., Patel, D. K., & Lim, K. (2020). Chapter 21 - Carbon nanotube-based nanohybrids for agricultural and biological applications. In Multifunctional Hybrid Nanomaterials for Sustainable Agri-food and Ecosystems. Elsevier Inc. https://doi.org/10.1016/B978-0-12-821354-4.00021-2

Gupta, N., Gupta, S. M., & Sharma, S. K. (2019). Carbon nanotubes: synthesis, properties and engineering applications. Carbon Letters, June 2020. https://doi.org/10.1007/s42823-019-00068-2

Henao, W., Cazaña, F., Tarifa, P., Romeo, E., Latorre, N., Sebastian, V., Delgado, J. J., & Monzón, A. (2021). Selective synthesis of carbon nanotubes by catalytic decomposition of methane using Co-Cu/cellulose derived carbon catalysts: A comprehensive kinetic study. Chemical Engineering Journal, 404, 126103. https://doi.org/10.1016/j.cej.2020.126103

Hernadi, K., Fonseca, A., Nagy, J. B., Siska, A., & Kiricsi, I. (2000). Production of nanotubes by the catalytic decomposition of different carbon-containing compounds. Applied Catalysis A: General, 199(2), 245–255. https://doi.org/10.1016/S0926-860X(99)00561-X

Hou, P. X., Du, J., Liu, C., Ren, W., Kauppinen, E. I., & Cheng, H. M. (2017). Applications of carbon nanotubes and graphene produced by chemical vapor deposition. MRS Bulletin, 42(11), 825–831. https://doi.org/10.1557/mrs.2017.238

Hsu, C. Y., Rheima, A. M., Mohammed, M. S., Kadhim, M. M., Mohammed, S. H., Abbas, F. H., Abed, Z. T., Mahdi, Z. M., Abbas, Z. S., Hachim, S. K., Ali, F. K., Mahmoud, Z. H., & kianfar, E. (2023). Application of Carbon Nanotubes and Graphene-Based Nanoadsorbents in Water Treatment. BioNanoScience. https://doi.org/10.1007/s12668-023-01175-1

Hussein, M. Z., Jaafar, A. M., & Yahaya, A. H. (2014). Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH. International Journal of Molecular Sciences, 15(11), 20254–20265. https://doi.org/10.3390/ijms151120254

Jalil, M. J., Rasnan, N. H. A., Yamin, A. F. M., Zaini, M. S. M., Morad, N., Azmi, I. S., Mahadi, M. B., & Yeop, M. Z. (2022). Optimization of Epoxidation Palm-Based Oleic Acid To Produce Polyols. Chemistry and Chemical Technology, 16(1), 66–73. https://doi.org/10.23939/chcht16.01.066

Kirby, E. D. (2006). A parameter design study in a turning operation using the Taguchi method. The technology interface, 1-14.

Kumar, M., & Ando, Y. (2010). Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. Journal of Nanoscience and Nanotechnology, 10(6), 3739–3758. https://doi.org/10.1166/jnn.2010.2939

Li, W. Z., Wen, J. G., & Ren, Z. F. (2002). Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Applied Physics A: Materials Science and Processing, 74(3), 397–402. https://doi.org/10.1007/s003390201284

Lim, X.-X., Low, S.-C., & Oh, W.-D. (2023). A critical review of heterogeneous catalyst design for carbon nanotubes synthesis: Functionalities, performances, and prospects. Fuel Processing Technology, 241, 107624. https://doi.org/10.1016/j.fuproc.2022.107624

Liu, Y., Zhai, Y., Li, S., Liu, X., Liu, X., Wang, B., Qiu, Z., & Li, C. (2020). Production of bio-oil with low oxygen and nitrogen contents by combined hydrothermal pretreatment and pyrolysis of sewage sludge. Energy, 203, 117829. https://doi.org/10.1016/j.energy.2020.117829

Lobiak, E. V., Kuznetsova, V. R., Flahaut, E., Okotrub, A. V., & Bulusheva, L. G. (2020). Effect of Co-Mo catalyst preparation and CH4/H2 flow on carbon nanotube synthesis. Fullerenes Nanotubes and Carbon Nanostructures, 28(9), 707–715. https://doi.org/10.1080/1536383X.2020.1749051

Lv, X., Zhang, T., Luo, Y., Zhang, Y., Wang, Y., & Zhang, G. (2020). Study on carbon nanotubes and activated carbon hybrids by pyrolysis of coal. Journal of Analytical and Applied Pyrolysis, 146, 104717. https://doi.org/10.1016/j.jaap.2019.104717

Makgabutlane, B., Nthunya, L. N., Maubane-Nkadimeng, M. S., & Mhlanga, S. D. (2021). Green synthesis of carbon nanotubes to address the water-energy-food nexus: A critical review. Journal of Environmental Chemical Engineering, 9(1), 104736. https://doi.org/10.1016/j.jece.2020.104736

Manawi, Y. M., Ihsanullah, Samara, A., Al-Ansari, T., & Atieh, M. A. (2018). A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials, 11(5). https://doi.org/10.3390/ma11050822

Mazumder, S., Sarkar, N., Park, J. G., & Kim, I. J. (2015). A novel processing technique for CNTs growth on Co-supported molecular sieve coated porous ceramics. Materials Letters, 161, 212–215. https://doi.org/10.1016/j.matlet.2015.08.097

Ming, H., Peiling, D., Yunlong, Z., Jing, G., & Xiaoxue, R. (2016). Effect of Reaction Temperature on Carbon Yield and Morphology of CNTs on Copper Loaded Nickel Nanoparticles, Journal of Nanomaterials, 2016, 106845. https://doi.org/10.1155/2016/8106845

Mohammadian, N., Ghoreishi, S. M., Hafeziyeh, S., Saeidi, S., & Dionysiou, D. D. (2018). Optimization of synthesis conditions of carbon nanotubes via ultrasonic-assisted floating catalyst deposition using response surface methodology. Nanomaterials, 8(5), 1–14. https://doi.org/10.3390/nano8050316

Mohd Ghazali, M. S., Md Zaini, M. S., Arshad, M., & Syed-Hassan, S. S. A. (2024). Co-production of biochar and carbon nanotube from sewage sludge in a two-stage process coupling pyrolysis and catalytic chemical vapor deposition. Waste Disposal & Sustainable Energy, 6, 323–334. https://doi.org/10.1007/s42768-024-00194-2

Naqvi, S. R., Tariq, R., Hameed, Z., Ali, I., Naqvi, M., Chen, W.-H., Ceylan, S., Rashid, H., Ahmad, J., & Taqvi, S. A. (2019). Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method. Renewable Energy, 131, 854–860. https://doi.org/10.1016/j.renene.2018.07.094

Ping, W., & Wang, J. (2016). Comprehensive characterisation of sewage sludge for thermochemical conversion processes – Based on Singapore survey. Waste Management, 54, 131–142. https://doi.org/10.1016/j.wasman.2016.04.038

Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V., & Kizek, R. (2011). Methods for carbon nanotubes synthesis - Review. Journal of Materials Chemistry, 21(40), 15872–15884. https://doi.org/10.1039/c1jm12254a

Roslan, S. Z., Zainudin, S. F., Aris, A. M., Chin, K. B., Musa, M., Rafizan, A., Daud, M., Shatir, S., & Hassan, A. S. (2023). Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel : Influences of Process Conditions on the Energetic Properties of Hydrochar. Energies, 16, 2483. https://doi.org/10.3390/en16052483

Shah, K. A., & Tali, B. A. (2016). Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing, 41, 67–82. https://doi.org/10.1016/j.mssp.2015.08.013

Shahbeig, H., & Nosrati, M. (2020). Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-`socio-economic assessment. Renewable and Sustainable Energy Reviews, 119, 109567. https://doi.org/10.1016/j.rser.2019.109567

Paul, S., Mondal, S., Saha, A., & Roy, S. (2023). Fundamentals and functionalization of CNTs and other carbon nanomaterials. Micro and Nano Technologies, 77–90. https://doi.org/10.1016/B978-0-12-824366-4.00008-X

Syed-Hassan, S. S. A., Wang, Y., Hu, S., Su, S., & Xiang, J. (2017). Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renewable and Sustainable Energy Reviews, 80, 888–913. https://doi.org/10.1016/j.rser.2017.05.262

Wang, C., Chang, J., Amatosa, T., Guo, Y., Lin, F., & Yen, Y. (2018). Carbon Nanotubes Grown Using Solid Polymer Chemical Vapor Deposition in a Fluidized Bed Reactor with Iron(III) Nitrate, Iron(III) Chloride and Nickel(II) Chloride Catalysts. Inventions, 3(1), 18. https://doi.org/10.3390/inventions3010018

Wang, J., Shen, B., Lan, M., Kang, D., & Wu, C. (2020). Carbon nanotubes (CNTs) production from catalytic pyrolysis of waste plastics: The influence of catalyst and reaction pressure. Catalysis Today, 351, 50–57. https://doi.org/10.1016/j.cattod.2019.01.058

Yu, Z., Chen, D., Tøtdal, B., & Holmen, A. (2005). Effect of catalyst preparation on the carbon nanotube growth rate. Catalysis Today, 100(3–4), 261–267. https://doi.org/10.1016/j.cattod.2004.09.060

Zaini, M. S. M., & Jalil, M. J. (2021). A Preliminary Study of the Sustainability of Oil Palm Biomass as Feedstock: Performance and Challenges of the Gasification Technology in Malaysia. Kem. Ind., 70(11–12), 717–728. https://doi.org/10.15255/kui.2020.077

Zhang, S., Qian, L., Zhao, Q., Wang, Z., Lin, D., & Liu, W. (2020). Carbon nanotube : Controlled synthesis determines its future. Sci. China Mater. 63, 16–34. https://doi.org/10.1007/s40843-019-9581-4

Zhang, Y. S., Zhu, H. L., Yao, D., Williams, P. T., Wu, C., Xu, D., Hu, Q., Manos, G., Yu, L., Zhao, M., Shearing, P. R., & Brett, D. J. L. (2021). Thermo-chemical conversion of carbonaceous wastes for CNT and hydrogen production: A review. Sustainable Energy and Fuels, 5(17), 4173–4208. https://doi.org/10.1039/d1se00619c

Downloads

Published

2024-10-31

How to Cite

Mohd Ghazali, M. S., Md Zaini, M. S. ., Roslan, S. Z. ., & Syed-Hassan, S. S. A. . (2024). Optimising of operation conditions for carbon nanotube production using pyrolysis coupled with catalytic chemical vapor deposition . Malaysian Journal of Chemical Engineering &Amp; Technology, 7(2), 112–130. https://doi.org/10.24191/mjcet.v7i2.1254