An overview of catalyst development for enhanced green hydrogen production

Authors

  • Wei Shi Ng Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
  • Nurulfasihah Azhar Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
  • Nur Rabiatul Adawiyah Mohd Shah Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
  • Nurul Nabila Rosman Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
  • Nur Ubaidah Saidin Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia and Industrial Technology Division, Malaysia Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia
  • Masliana Muslimin Industrial Technology Division, Malaysia Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia
  • Rozan Mohamad Yunus Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia

DOI:

https://doi.org/10.24191/mjcet.v7i2.1294

Keywords:

Electrocatalyst, Photocatalyst, Hydrogen production, Sustainable energy, Green hydrogen

Abstract

The persistent release of greenhouse gases, primarily due to the heavy reliance on fossil fuels in transportation and energy-intensive industries, necessitates urgent research into sustainable alternatives. These sectors, regarded as the foundation of civilisation, make significant contributions to environmental degradation. In response, hydrogen (H2) emerges as a promising energy source capable of meeting global energy needs while reducing harmful emissions. This article provides a comprehensive overview of cutting-edge H2 production technologies, focusing on a critical issue within this landscape: the use of precious metals in catalysts. While precious metals such as platinum have excellent catalytic activity, their scarcity and high cost make widespread implementation difficult. A careful review of catalyst support materials to improve overall performance and stability is also provided. It explores the wider field of catalysts for producing green H2, including needs, recent findings, theoretical effectiveness, and developing approaches to lessen reliance on precious metals. The article concludes with perspectives on the future, promoting a better understanding of the complex interplay between catalyst design, sustainability, and green H2 production.

References

Ahmad, N. A., Hussain, N. H., Anas, N., & Jamian, J. J. (2020). Pemasangan panel solar bagi menampung bekalan elektrik tambahan untuk institusi pendidikan agama persendirian di luar bandar: melalui pendekatan program kemasyarakatan komuniti. Malaysian Journal of Sustainable Environment, 7(2), 155. https://doi.org/10.24191/myse.v7i2.10270

Alhaj Omar, F. (2023). A new approach for improving the efficiency of the indirectly coupled photovoltaic-electrolyzer system. International Journal of Hydrogen Energy, 48(24), 8768–8782. https://doi.org/10.1016/j.ijhydene.2022.11.327

Alotaibi, R., Amer, M. S., Arunachalam, P., & Alshammari, S. G. (2024). Green Synthesis of Manganese-Cobalt Oxyhydroxide Nanocomposite as Electrocatalyst for Enhanced Oxygen Evolution Reaction in Alkaline Medium. Catalysts, 14(6). https://doi.org/10.3390/catal14060369

Armstrong, R. D., Briggs, G. W. D., & Charles, E. A. (1988). Some effects of the addition of cobalt to the nickel hydroxide electrode. Journal of Applied Electrochemistry, 18(2), 215–219. https://doi.org/10.1007/BF01009266

Benghanem, M., Mellit, A., Almohamadi, H., Haddad, S., Chettibi, N., Alanazi, A. M., Dasalla, D., & Alzahrani, A. (2023). Hydrogen Production Methods Based on Solar and Wind Energy: A Review. Energies, 16(2), 757. https://doi.org/10.3390/en16020757

Brauns, J., & Turek, T. (2020). Alkaline Water Electrolysis Powered by Renewable Energy: A Review. Processes, 8(2), 248. https://doi.org/10.3390/pr8020248

Broicher, C., Zeng, F., Artz, J., Hartmann, H., Besmehn, A., Palkovits, S., & Palkovits, R. (2019). Facile Synthesis of Mesoporous Nickel Cobalt Oxide for OER – Insight into Intrinsic Electrocatalytic Activity. ChemCatChem, 11(1), 412–416. https://doi.org/10.1002/cctc.201801316

Cai, X., Song, Q., Jiao, D., Yu, H., Tan, X., Wang, R., & Luo, S. (2022). Bifunctional electrocatalysts of CoFeP/rGO heterostructure for water splitting. International Journal of Hydrogen Energy, 47(93), 39499–39508. https://doi.org/10.1016/j.ijhydene.2022.09.112

Calado, G., & Castro, R. (2021). Hydrogen Production from Offshore Wind Parks: Current Situation and Future Perspectives. Applied Sciences, 11(12), 5561. https://doi.org/10.3390/app11125561

Chang, S. L. Y., Fekete, M., Hocking, R. K., Izgorodina, A., Singh, A., Zhou, F., MacFarlane, D. R., & Spiccia, L. (2013). Role of Advanced Analytical Techniques in the Design and Characterization of Improved Catalysts for Water Oxidation. In New and Future Developments in Catalysis (pp. 305–339). Elsevier. https://doi.org/10.1016/B978-0-444-53872-7.00014-5

Chen, T. W., Ramachandran, R., Chen, S. M., Anushya, G., Al-Sehemi, A. G., Mariyappan, V., Alargarsamy, S., Alam, M. M., Mahesh, T. C., Kalimuthu, P., & Kannan, R. (2024). An overview of semiconductor electrode materials for photoelectrochemical water splitting and CO2 conversion. International Journal of Electrochemical Science, 19(5), 100542. https://doi.org/10.1016/j.ijoes.2024.100542

Chen, Z. W., Zhu, J. L., Liu, J., & Wei, A. X. (2023). FexMo1-xS2/CNT@CC nanosheets as an efficient bifunctional electrocatalyst for overall water splitting. Digest Journal of Nanomaterials and Biostructures, 18(4), 1473–1484. https://doi.org/10.15251/DJNB.2023.184.1473

Choi, J. H., Kim, D. S., Sarker, S., Lee, H. H., Suh, H. W., Jung, S. H., Lee, K. W., Lee, H. S., & Cho, H. K. (2022). Atomic-scale platinum deposition on photocathodes by multiple redox cycles under illumination for enhanced solar-to-hydrogen energy conversion. Journal of Power Sources, 533(March), 231410. https://doi.org/10.1016/j.jpowsour.2022.231410

Dai, Y., Yu, J., Cheng, C., Tan, P., & Ni, M. (2020). Engineering the interfaces in water-splitting photoelectrodes – an overview of the technique development. Journal of Materials Chemistry A, 8(15), 6984–7002. https://doi.org/10.1039/D0TA01670E

Dong, H., Li, J., Chen, M., Wang, H., Jiang, X., Xiao, Y., Tian, B., & Zhang, X. (2019). High-throughput production of ZnO-MoS2-graphene heterostructures for highly efficient photocatalytic hydrogen evolution. Materials, 12(14). https://doi.org/10.3390/ma12142233

Farajzadeh, M., & Rahsepar, F. R. (2023). A Review of the Recent Advances in Development of Noble Metal‐Free Materials as Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ChemElectroChem, 202300516. https://doi.org/10.1002/celc.202300516

Ghosh, S., & Hajra, P. (2021). Metal oxide catalysts for photoelectrochemical water splitting. In T. W. Napporn & Y. B. T.-M. O.-B. N. E. for F. C. Holade Electrolyzers, and Metal-air Batteries (Eds.), Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-air Batteries (pp. 105–138). Elsevier. https://doi.org/10.1016/B978-0-12-818496-7.00005-9

Gu, X., Ying, Z., Zheng, X., Dou, B., & Cui, G. (2023). Photovoltaic-based energy system coupled with energy storage for all-day stable PEM electrolytic hydrogen production. Renewable Energy, 209(August 2022), 53–62. https://doi.org/10.1016/j.renene.2023.03.135

Haider, S. A., Sajid, M., & Iqbal, S. (2021). Forecasting hydrogen production potential in islamabad from solar energy using water electrolysis. International Journal of Hydrogen Energy, 46(2), 1671–1681. https://doi.org/10.1016/j.ijhydene.2020.10.059

Harris-Lee, T. R., Marken, F., Bentley, C. L., Zhang, J., & Johnson, A. L. (2023). A chemist’s guide to photoelectrode development for water splitting – the importance of molecular precursor design. EES Catalysis, 1(6), 832–873. https://doi.org/10.1039/D3EY00176H

Kang, D., Kim, T. W., Kubota, S. R., Cardiel, A. C., Cha, H. G., & Choi, K. (2015). Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting. Chemical Reviews, 115(23), 12839–12887. https://doi.org/10.1021/acs.chemrev.5b00498

Kim, C. K., Cho, H. S., Kim, C. H., Cho, W., & Kim, H. G. (2021). A Feasibility Study of Photovoltaic—Electrolysis—PEM Hybrid System Integrated Into the Electric Grid System Over the Korean Peninsula. Frontiers in Chemistry, 9(September), 1–12. https://doi.org/10.3389/fchem.2021.732582

Kiptarus, J. J., Korir, K. K., Githinji, D. N., & Kiriamiti, H. K. (2024). Improved photocatalytic performance of cobalt doped ZnS decorated with graphene nanostructures under ultraviolet and visible light for efficient hydrogen production. Scientific Reports, 14(1), 1–14. https://doi.org/10.1038/s41598-024-72645-z

Kojima, H., Nagasawa, K., Todoroki, N., Ito, Y., Matsui, T., & Nakajima, R. (2023). Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production. International Journal of Hydrogen Energy, 48(12), 4572–4593. https://doi.org/10.1016/j.ijhydene.2022.11.018

Kumar, M., Meena, B., Subramanyam, P., Suryakala, D., & Subrahmanyam, C. (2022). Recent trends in photoelectrochemical water splitting: the role of cocatalysts. NPG Asia Materials, 14(1), 88. https://doi.org/10.1038/s41427-022-00436-x

Li, J., & Wu, N. (2015). Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catalysis Science & Technology, 5(3), 1360–1384. https://doi.org/10.1039/C4CY00974F

Li, L., Wang, P., Shao, Q., & Huang, X. (2020). Metallic nanostructures with low dimensionality for electrochemical water splitting. Chemical Society Reviews, 49(10), 3072–3106. https://doi.org/10.1039/D0CS00013B

Li, S., Zhang, P., Song, X., & Gao, L. (2015). Photoelectrochemical Hydrogen Production of TiO2 Passivated Pt/Si-Nanowire Composite Photocathode. ACS Applied Materials and Interfaces, 7(33), 18560–18565. https://doi.org/10.1021/acsami.5b04936

Li, X. P., Huang, C., Han, W. K., Ouyang, T., & Liu, Z. Q. (2021). Transition metal-based electrocatalysts for overall water splitting. Chinese Chemical Letters, 32(9), 2597–2616. https://doi.org/10.1016/j.cclet.2021.01.047

Liu, H., Xi, C., Xin, J., Zhang, G., Zhang, S., Zhang, Z., Huang, Q., Li, J., Liu, H., & Kang, J. (2021). Free-standing nanoporous NiMnFeMo alloy: An efficient non-precious metal electrocatalyst for water splitting. Chemical Engineering Journal, 404, 126530. https://doi.org/10.1016/j.cej.2020.126530

Mamiyev, Z., & Balayeva, N. O. (2022). Metal Sulfide Photocatalysts for Hydrogen Generation: A Review of Recent Advances. Catalysts, 12(11), 1316. https://doi.org/10.3390/catal12111316

Marquez, R. A., Kalokowski, E., Espinosa, M., Bender, J. T., Son, Y. J., Kawashima, K., Chukwuneke, C. E., Smith, L. A., Celio, H., Dolocan, A., Zhan, X., Miller, N., Milliron, D. J., Resasco, J., & Mullins, C. B. (2024). Transition metal incorporation: electrochemical, structure, and chemical composition effects on nickel oxyhydroxide oxygen-evolution electrocatalysts. Energy and Environmental Science, 17(5), 2028–2045. https://doi.org/10.1039/d3ee03617k

Martinez Lopez, V. A., Ziar, H., Haverkort, J. W., Zeman, M., & Isabella, O. (2023). Dynamic operation of water electrolyzers: A review for applications in photovoltaic systems integration. Renewable and Sustainable Energy Reviews, 182(September 2022), 113407. https://doi.org/10.1016/j.rser.2023.113407

Minggu, L. J., Wan Daud, W. R., & Kassim, M. B. (2010). An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 35(11), 5233–5244. https://doi.org/10.1016/j.ijhydene.2010.02.133

Mohd Shah, N. R. A., Mohamad Yunus, R., Rosman, N. N., Wong, W. Y., Arifin, K., & Jeffery Minggu, L. (2021). Current progress on 3D graphene-based photocatalysts: From synthesis to photocatalytic hydrogen production. International Journal of Hydrogen Energy, 46(14), 9324–9340. https://doi.org/10.1016/j.ijhydene.2020.12.089

Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews, 67, 597–611. https://doi.org/10.1016/j.rser.2016.09.044

Periyasamy, T., Asrafali, S. P., Kim, S., & Lee, J. (2023). Facile Synthesis of Nitrogen-Rich Porous Carbon/NiMn Hybrids Using Efficient Water-Splitting Reaction. Polymers, 15(14), 3116. https://doi.org/10.3390/polym15143116

Rosman, N. N., Yunus, R. M., Shah, N. R. A. M., Shah, R. M., Arifin, K., Minggu, L. J., & Ludin, N. A. (2022). An overview of co‐catalysts on metal oxides for photocatalytic water splitting. International Journal of Energy Research, 46(9), 11596–11619. https://doi.org/10.1002/er.8001

Samuel, E., Joshi, B., Kim, M., Swihart, M. T., & Yoon, S. S. (2020). Morphology engineering of photoelectrodes for efficient photoelectrochemical water splitting. Nano Energy, 72(February), 104648. https://doi.org/10.1016/j.nanoen.2020.104648

Sharifi, T., Mohammadi, T., Momeni, M. M., Kusic, H., Rokovic, M. K., Bozic, A. L., & Ghayeb, Y. (2021). Influence of photo-deposited pt and pd onto chromium doped tio2 nanotubes in photo-electrochemical water splitting for hydrogen generation. Catalysts, 11(2), 1–16. https://doi.org/10.3390/catal11020212

Shiva Kumar, S., & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies, 2(3), 442–454. https://doi.org/10.1016/j.mset.2019.03.002

Song, G., Wang, Z., Sun, J., Sun, J., Yuan, D., & Zhang, L. (2019). ZnCo2S4 nanosheet array anchored on nickel foam as electrocatalyst for electrochemical water splitting. Electrochemistry Communications, 105(May), 106487. https://doi.org/10.1016/j.elecom.2019.106487

Sowmya, S., & Vijaikanth, V. (2023). g-C3N4/Chlorocobaloxime Nanocomposites as Multifunctional Electrocatalysts for Water Splitting and Energy Storage. ACS Omega, 8(36), 32940–32954. https://doi.org/10.1021/acsomega.3c04347

Ta, H., Zhao, L., Pohl, D., Pang, J., Trzebicka, B., Rellinghaus, B., Pribat, D., Gemming, T., Liu, Z., Bachmatiuk, A., & Rümmeli, M. (2016). Graphene-Like ZnO: A Mini Review. Crystals, 6(8), 100. https://doi.org/10.3390/cryst6080100

Tai, G., Xu, M., Hou, C., Liu, R., Liang, X., & Wu, Z. (2021). Borophene Nanosheets as High-Efficiency Catalysts for the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 13(51), 60987–60994. https://doi.org/10.1021/acsami.1c15953

Tam, B., Babacan, O., Kafizas, A., & Nelson, J. (2024). Comparing the net-energy balance of standalone photovoltaic-coupled electrolysis and photoelectrochemical hydrogen production. Energy and Environmental Science, 17(5), 1677–1694. https://doi.org/10.1039/d3ee02814c

Thakur, A., Ghosh, D., Devi, P., Kim, K., & Kumar, P. (2020). Current progress and challenges in photoelectrode materials for the production of hydrogen. Chemical Engineering Journal, 397, 125415. https://doi.org/10.1016/j.cej.2020.125415

Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar Water Splitting Cells. Chemical Reviews, 110(11), 6446–6473. https://doi.org/10.1021/cr1002326

Wang, S., Lu, A., & Zhong, C. J. (2021). Hydrogen production from water electrolysis: role of catalysts. In Nano Convergence (Vol. 8, Issue 1). Korea Nano Technology Research Society. https://doi.org/10.1186/s40580-021-00254-x

Wang, X., Yang, L., Xing, C., Han, X., Du, R., He, R., Guardia, P., Arbiol, J., & Cabot, A. (2022). MOF-Derived Ultrathin Cobalt Molybdenum Phosphide Nanosheets for Efficient Electrochemical Overall Water Splitting. Nanomaterials, 12(7), 1098. https://doi.org/10.3390/nano12071098

Wenelska, K., Dymerska, A., & Mijowska, E. (2023). Promotion of borophene/NiO-based electrocatalyst for oxygen evolution reaction. Chemical Engineering Journal, 476(October), 146714. https://doi.org/10.1016/j.cej.2023.146714

Wu, S., Wang, Z., Zhang, H., Cai, J., & Li, J. (2023). Deep Learning Accelerates the Discovery of Two‐Dimensional Catalysts for Hydrogen Evolution Reaction. Energy & Environmental Materials, 6(1),

e12259. https://doi.org/10.1002/eem2.12259

Wu, W., Liu, J., & Johannes, N. (2021). Electrodeposition of Ir–Co thin films on copper foam as high-performance electrocatalysts for efficient water splitting in alkaline medium. International Journal of Hydrogen Energy, 46(1), 609–621. https://doi.org/10.1016/j.ijhydene.2020.09.268

Xu, Q., Zhang, L., Zhang, J., Wang, J., Hu, Y., Jiang, H., & Li, C. (2022). Anion Exchange Membrane Water Electrolyzer: Electrode Design, Lab-Scaled Testing System and Performance Evaluation. In EnergyChem (Vol. 4, Issue 5). Elsevier B.V. https://doi.org/10.1016/j.enchem.2022.100087

Yan, Y., Lin, J., Xu, T., Liu, B., Huang, K., Qiao, L., Liu, S., Cao, J., Jun, S. C., Yamauchi, Y., & Qi, J. (2022). Atomic‐Level Platinum Filling into Ni‐Vacancies of Dual‐Deficient NiO for Boosting Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 12(24). https://doi.org/10.1002/aenm.202200434

Yu, J. M., Lee, J., Kim, Y. S., Song, J., Oh, J., Lee, S. M., Jeong, M., Kim, Y., Kwak, J. H., Cho, S., Yang, C., & Jang, J. (2020). High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode. Nature Communications, 11(1), 5509. https://doi.org/10.1038/s41467-020-19329-0

Zainol, H., Alauddin, K., & Shukri, N. (2017). THE GREEN BUILDING ASSESSMENT TOOLS FOR WATER EFFICIENCY CRITERIA IN MALAYSIA: AN ANALYSIS. Malaysian Journal of Sustainable Environment, 2(1), 161. https://doi.org/10.24191/myse.v2i1.5589

Zhang, H., Liu, J., Xu, T., Ji, W., & Zong, X. (2023). Recent Advances on Small Band Gap Semiconductor Materials (≤2.1 eV) for Solar Water Splitting. Catalysts, 13(4), 728. https://doi.org/10.3390/catal13040728

Zhang, H., Wang, H., & Xuan, J. (2020). Rational design of photoelectrochemical cells towards bias-free water splitting: Thermodynamic and kinetic insights. Journal of Power Sources, 462(January), 228113. https://doi.org/10.1016/j.jpowsour.2020.228113

Zhang, J., Bu, Y., Li, Z., Yang, T., Zhao, N., Wu, G., Zhao, F., Zhang, R., & Zhang, D. (2024). Nanoarchitectonics of Fe-Doped Ni3S2 Arrays on Ni Foam from MOF Precursors for Promoted Oxygen Evolution Reaction Activity. Nanomaterials, 14(17). https://doi.org/10.3390/nano14171445

Zhang, J., Zhu, Y., Njel, C., Liu, Y., Dallabernardina, P., Stevens, M. M., Seeberger, P. H., Savateev, O., & Loeffler, F. F. (2023). Metal-free photoanodes for C–H functionalization. Nature Communications, 14(1), 1–9. https://doi.org/10.1038/s41467-023-42851-w

Zheng, X., Cui, P., Qian, Y., Zhao, G., Zheng, X., Xu, X., Cheng, Z., Liu, Y., Dou, S. X., & Sun, W. (2020). Multifunctional Active-Center-Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie - International Edition, 59(34), 14533–14540. https://doi.org/10.1002/anie.202005241

Zhu, J., Gumundsdóttir, J. B., Strandbakke, R., Both, K. G., Aarholt, T., Carvalho, P. A., Sørby, M. H., Jensen, I. J. T., Guzik, M. N., Norby, T., Haug, H., & Chatzitakis, A. (2021). Double Perovskite Cobaltites Integrated in a Monolithic and Noble Metal-Free Photoelectrochemical Device for Efficient Water Splitting. ACS Applied Materials and Interfaces, 13(17), 20313–20325. https://doi.org/10.1021/acsami.1c01900

Downloads

Published

2024-10-31

How to Cite

Ng, W. S., Azhar, N., Mohd Shah, N. R. A., Rosman, N. N., Saidin, N. U., Muslimin, M., & Mohamad Yunus, R. (2024). An overview of catalyst development for enhanced green hydrogen production . Malaysian Journal of Chemical Engineering &Amp; Technology, 7(2), 205–223. https://doi.org/10.24191/mjcet.v7i2.1294