Photoelectrochemical characterisation of direct and pulse electrodeposited copper on fluorine-doped tin oxide glass
DOI:
https://doi.org/10.24191/mjcet.v7i2.1320Keywords:
Electrodeposition, Copper metal, Thin film, FTOAbstract
Electrodeposition (ED) is applied in several applications since it is one of the most user‐friendly and cost-effective techniques. The increasing popularity of this technique is due to its capacity to control the morphology and chemical composition of the target materials. Copper (Cu) is one of the metals that can be discovered in the greatest abundance on earth. It has been used as an alternative to noble metals to improve the photo electrochemical (PEC) activity for hydrogen generation. This research involved the electrochemical deposition of Cu metal onto fluorine-doped tin oxide (FTO) glass using direct and pulse ED. The objective of this study is to investigate the PEC performance of Cu metal electrodeposited on FTO glass by evaluating its efficiency under light illumination. The deposition of the Cu films was successful, resulting in a thin layer of Cu films onto the FTO. The PEC response of metallic Cu was analysed by doing an LSV study on the thin films, in relation to the ED technique, applied voltage, ED time, and pulse cycle. The results show that the FTO/Cu −0.8 V samples produced via pulse ED have the highest PEC activity. The deposition of strongly adhering and improved morphology of Cu thin film is important especially for interconnect in semiconductor applications.
References
Adris, N. A., Minggu, L. J., Arifin, K., Mohamad Yunus, R., Mohamed, M. A., Muslimin, M., & Kassim, M. B. (2023). Copper Nanoparticles Coating on FTO with Improved Adhesion Using Direct and Pulse Electrodeposition Techniques from a Simple Copper Sulphate Solution. Sains Malaysiana, 52(8), 2209–2224. https://doi.org/10.17576/jsm-2023-5208-04
Ahmad, N. A., Hussain, N. H., Anas, N., & Jamian, J. J. (2020). Pemasangan panel solar bagi menampung bekalan elektrik tambahan untuk institusi pendidikan agama persendirian di luar bandar, melalui pendekatan program kemasyarakatan komuniti. Malaysian Journal of Sustainable Environment, 7(2), 155. https://doi.org/10.24191/myse.v7i2.10270
Bhardwaj, S., Dogra, D., Pal, B., & Singh, S. (2019). Photodeposition time dependant growth, size and photoactivity of Ag and Cu deposited TiO2 nanocatalyst under solar irradiation. Solar Energy, 194, 618–627. https://doi.org/10.1016/j.solener.2019.10.055
Cao, S., Yu, D., Lin, Y., Zhang, C., Lu, L., Yin, M., Zhu, X., Chen, X., & Li, D. (2020). Light propagation in flexible thin-film amorphous silicon solar cells with nanotextured metal back reflectors. ACS Applied Materials & Interfaces, 12(23), 26184–26192. https://doi.org/10.1021/acsami.0c05330
Chakraborty, B., Beltrán‐Suito, R., Hlukhyy, V., Schmidt, J., Menezes, P. W., & Driess, M. (2020). Crystalline copper selenide as a reliable non‐noble electro-catalyst for overall water splitting. ChemSusChem, 13(12), 3222–3229. https://doi.org/10.1002/cssc.202000445
Chen, D., Liu, Z., Guo, Z., Yan, W., & Xin, Y. (2018). Enhancing light harvesting and charge separation of Cu2O photocathodes with spatially separated noble-metal cocatalysts towards highly efficient water splitting. Journal of Materials Chemistry A, 6(41), 20393–20401. https://doi.org/10.1039/C8TA07503D
Doong, R., & Liao, C.-Y. (2017). Enhanced photocatalytic activity of Cu-deposited N-TiO2/titanate nanotubes under UV and visible light irradiations. Separation and Purification Technology, 179, 403–411. https://doi.org/10.1016/j.seppur.2017.02.028
Giurlani, W., Berretti, E., Innocenti, M., & Lavacchi, A. (2020). Measuring the thickness of metal coatings: A review of the methods. Coatings, 10(12), 1211. https://doi.org/10.3390/coatings10121211
Grujicic, D., & Pesic, B. (2002). Electrodeposition of copper: the nucleation mechanisms. Electrochimica Acta, 47(18), 2901–2912. https://doi.org/10.1016/S0013-4686(02)00161-5
Hayakawa, T., Kawashita, M., & Takaoaka, G. H. (2008). Coating of hydroxyapatite films on titanium substrates by electrodeposition under pulse current. Journal of the Ceramic Society of Japan, 116(1349), 68–73. https://doi.org/10.2109/jcersj2.116.68
He, J., Feng, H., Wang, T., Wang, T., & Zeng, H. (2018). Morphology-controlled electrodeposition of copper nanospheres onto FTO for enhanced photocatalytic hydrogen production. Chinese Journal of Chemistry, 36(1), 31–36. https://doi.org/10.1002/cjoc.201700344
Kale, M. B., Borse, R. A., Gomaa Abdelkader Mohamed, A., & Wang, Y. (2021). Electrocatalysts by electrodeposition: Recent advances, synthesis methods, and applications in energy conversion. Advanced Functional Materials, 31(25), 2101313. https://doi.org/10.1002/ADFM.202101313
Kang, Z., Yan, X., Wang, Y., Bai, Z., Liu, Y., Zhang, Z., Lin, P., Zhang, X., Yuan, H., Zhang, X., & Zhang, Y. (2015). Electronic Structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered biosensing application. Scientific Reports, 5(1), 7882. https://doi.org/10.1038/srep07882
Kannimuthu, K., Sangeetha, K., Sam Sankar, S., Karmakar, A., Madhu, R., & Kundu, S. (2021). Investigation on nanostructured Cu-based electrocatalysts for improvising water splitting: A review. Inorganic Chemistry Frontiers, 8(1), 234–272. https://doi.org/10.1039/D0QI01060J
Karim, K. N. (2021). A review of the sustainable development goals policy framework for Malaysian local governments. Malaysian Journal of Sustainable Environment, 8(1), 157–177. https://doi.org/10.24191/myse.v8i2.13245
Kovač, A., Paranos, M., & Marciuš, D. (2021). Hydrogen in energy transition: A review. International Journal of Hydrogen Energy, 46(16), 10016–10035. https://doi.org/10.1016/j.ijhydene.2020.11.256
Li, J., Le, K., & Wei, W. (2022). Enabling a stable and dendrite-suppressed Zn anode via facile surface roughness engineering. Journal of Materials Science & Technology, 102, 272–277. https://doi.org/10.1016/j.jmst.2021.06.024
Li, L., Wang, S., Xiong, L., Wang, B., Yang, G., & Yang, S. (2019). Surface-engineered mesoporous Pt nanodendrites with Ni dopant for highly enhanced catalytic performance in hydrogen evolution reaction. Journal of Materials Chemistry A, 7(20), 12800–12807. https://doi.org/10.1039/C9TA02696G
Li, S., Miao, P., Zhang, Y., Wu, J., Zhang, B., Du, Y., Han, X., Sun, J., & Xu, P. (2021a). Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Advanced Materials, 33(6), 2000086. https://doi.org/10.1002/adma.202000086
Li, X., Wang, Z., & Wang, L. (2021b). Metal–organic framework‐based materials for solar water splitting. Small Science, 1(5), 2000074. https://doi.org/10.1002/smsc.202000074
Lin, W.-C., Chuang, C.-C., Wang, P.-T., & Tang, C.-M. (2018). A comparative study on the direct and pulsed current electrodeposition of cobalt-substituted hydroxyapatite for magnetic resonance imaging application. Materials, 12(1), 116. https://doi.org/10.3390/ma12010116
Liu, H., Wang, A., Sun, Q., Wang, T., & Zeng, H. (2017). Cu nanoparticles/fluorine-doped tin oxide (FTO) nanocomposites for photocatalytic H2 evolution under visible light irradiation. Catalysts, 7(12), 385. https://doi.org/10.3390/catal7120385
Ma, X., Liu, Z., & Chen, H. (2019). Facile and scalable electrodeposition of copper current collectors for high-performance Li-metal batteries. Nano Energy, 59, 500–507. https://doi.org/10.1016/j.nanoen.2019.02.048
Ma, Y., Ahlberg, E., Sun, Y., Iversen, B. B., & Palmqvist, A. E. C. (2011). Thermoelectric properties of thin films of bismuth telluride electrochemically deposited on stainless steel substrates. Electrochimica Acta, 56(11), 4216–4223. https://doi.org/10.1016/j.electacta.2011.01.093
Mohd Shah, N. R. A., Mohamad Yunus, R., Rosman, N. N., Wong, W. Y., Arifin, K., & Jeffery Minggu, L. (2021). Current progress on 3D graphene-based photocatalysts: From synthesis to photocatalytic hydrogen production. International Journal of Hydrogen Energy, 46(14), 9324–9340. https://doi.org/10.1016/j.ijhydene.2020.12.089
Nishikawa, K., Chassaing, E., & Rosso, M. (2013). Evolution of the Morphology of Electrodeposited Copper at the Early Stage of Dendritic Growth. Journal of The Electrochemical Society, 160(4), D183–D187. https://doi.org/10.1149/2.087304jes
Popov, K. I., & Nikolić, N. D. (2012). General Theory of Disperse Metal Electrodeposits Formation. In Electrochemical Production of Metal Powders: Modern Aspects of Electrochemistry (pp. 1–62). Springer US.
Rajput, A., Kundu, A., & Chakraborty, B. (2021). Recent Progress on Copper‐Based Electrode Materials for Overall Water‐Splitting. ChemElectroChem, 8(10), 1698–1722. https://doi.org/10.1002/celc.202100307
Rocha, V. M. D. S., Pereira, M. D. G., Teles, L. R., & Souza, M. O. D. G. (2014). Effect of copper on the photocatalytic activity of semiconductor-based titanium dioxide (anatase) and hematite (α-Fe2O3). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 185(1), 13–20. https://doi.org/10.1016/J.MSEB.2014.02.004
Rosman, N. N., Mohamad Yunus, R., Jeffery Minggu, L., Arifin, K., Salehmin, M. N. I., Mohamed, M. A., & Kassim, M. B. (2018). Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: An overview. International Journal of Hydrogen Energy, 43(41), 18925–18945. https://doi.org/10.1016/j.ijhydene.2018.08.126
Satar, I., Daud, W. R. W., Kim, B. H., Somalu, M. R., Ghasemi, M., Bakar, M. H. A., Jafary, T., & Timmiati, S. N. (2018). Performance of titanium–nickel (Ti/Ni) and graphite felt-nickel (GF/Ni) electrodeposited by Ni as alternative cathodes for microbial fuel cells. Journal of the Taiwan Institute of Chemical Engineers, 89, 67–76. https://doi.org/10.1016/j.jtice.2018.04.010
Schnebele, E., Jaiswal, K., Luco, N., & Nassar, N. T. (2019). Natural hazards and mineral commodity supply: Quantifying risk of earthquake disruption to South American copper supply. Resources Policy, 63, 101430. https://doi.org/10.1016/j.resourpol.2019.101430
Seyedraoufi, Z. S., & Mirdamadi, S. (2014). Effects of pulse electrodeposition parameters and alkali treatment on the properties of nano hydroxyapatite coating on porous Mg–Zn scaffold for bone tissue engineering application. Materials Chemistry and Physics, 148(3), 519–527. https://doi.org/10.1016/j.matchemphys.2014.06.067
Shen, R., He, K., Zhang, A., Li, N., Ng, Y. H., Zhang, P., Hu, J., & Li, X. (2021). In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Applied Catalysis B: Environmental, 291, 120104. https://doi.org/10.1016/j.apcatb.2021.120104
Sierra-Herrera, D. K., Sandoval-Amador, A., Montañez-Supelano, N. D., & Peña-Ballesteros, D. Y. (2017). The effect of pulsed current electrodeposition parameters of calcium phosphates coating on Ti6Al4V ELI. Journal of Physics: Conference Series, 935, 012032. https://doi.org/10.1088/1742-6596/935/1/012032
Simpson, D. E., Johnson, C. A., & Roy, D. (2019). Pulsed Galvanostatic Electrodeposition of Copper on Cobalt Using a pH-Neutral Plating Bath and Electroless Seeds. Journal of The Electrochemical Society, 166(1), D3142–D3154. https://doi.org/10.1149/2.0171901jes
Sui, R., Charpentier, P. A., & Marriott, R. A. (2021). Metal Oxide-Related Dendritic Structures: Self-Assembly and Applications for Sensor, Catalysis, Energy Conversion and Beyond. Nanomaterials, 11(7), 1686. https://doi.org/10.3390/nano11071686
Taherinia, D., Moazzeni, M., & Moravej, S. (2022). Comparison of hydrothermal and electrodeposition methods for the synthesis of CoSe2/CeO2 nanocomposites as electrocatalysts toward oxygen evolution reaction. International Journal of Hydrogen Energy, 47(40), 17650–17661. https://doi.org/10.1016/J.IJHYDENE.2022.03.257
Tang, Y., Traveerungroj, P., Tan, H. L., Wang, P., Amal, R., & Ng, Y. H. (2015a). Scaffolding an ultrathin CdS layer on a ZnO nanorod array using pulsed electrodeposition for improved photocharge transport under visible light illumination. Journal of Materials Chemistry A, 3(38), 19582–19587. https://doi.org/10.1039/C5TA05195A
Tang, Y., Wang, P., Yun, J.-H., Amal, R., & Ng, Y. H. (2015b). Frequency-regulated pulsed electrodeposition of CuInS2 on ZnO nanorod arrays as visible light photoanodes. Journal of Materials Chemistry A, 3(31), 15876–15881. https://doi.org/10.1039/C5TA03255E
Wasekar, N. P., Bathini, L., & Sundararajan, G. (2018). Tribological Behavior of Pulsed Electrodeposited Ni-W/SiC Nanocomposites. Journal of Materials Engineering and Performance, 27(10), 5236–5245. https://doi.org/10.1007/s11665-018-3608-z
Weng, B., Qi, M.-Y., Han, C., Tang, Z.-R., & Xu, Y.-J. (2019). Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle, Current Development, and Future Perspective. ACS Catalysis, 9(5), 4642–4687. https://doi.org/10.1021/acscatal.9b00313
Wu, H., Zheng, Z., Tang, Y., Huang, N. M., Amal, R., Lim, H. N., & Ng, Y. H. (2018). Pulsed electrodeposition of CdS on ZnO nanorods for highly sensitive photoelectrochemical sensing of copper (II) ions. Sustainable Materials and Technologies, 18. https://doi.org/10.1016/J.SUSMAT.2018.E00075
Xiao, F., Hangarter, C., Yoo, B., Rheem, Y., Lee, K. H., & Myung, N. V. (2008). Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochimica Acta, 53(28), 8103–8117. https://doi.org/10.1016/J.ELECTACTA.2008.06.015
Xiao, S., Liu, P., Zhu, W., Li, G., Zhang, D., & Li, H. (2015). Copper Nanowires: A Substitute for Noble Metals to Enhance Photocatalytic H 2 Generation. Nano Letters, 15(8), 4853–4858. https://doi.org/10.1021/acs.nanolett.5b00082
Xin, Y., Yu, K., Zhang, L., Yang, Y., Yuan, H., Li, H., Wang, L., & Zeng, J. (2021). Copper‐Based Plasmonic Catalysis: Recent Advances and Future Perspectives. Advanced Materials, 33(32), 2008145. https://doi.org/10.1002/adma.202008145
Xu, G.-R., Ge, C., Liu, D., Jin, L., Li, Y.-C., Zhang, T.-H., Rahman, M. M., Li, X.-B., & Kim, W. (2019). In-situ electrochemical deposition of dendritic Cu-Cu2S nanocomposites onto glassy carbon electrode for sensitive and non-enzymatic detection of glucose. Journal of Electroanalytical Chemistry, 847, 113177. https://doi.org/10.1016/j.jelechem.2019.05.059
Yang, H., Fey, E. O., Trimm, B. D., Dimitrov, N., & Whittingham, M. S. (2014). Effects of Pulse Plating on lithium electrodeposition, morphology and cycling efficiency. Journal of Power Sources, 272, 900–908. https://doi.org/10.1016/j.jpowsour.2014.09.026
Yao, T., An, X., Han, H., Chen, J. Q., & Li, C. (2018). Photoelectrocatalytic Materials for Solar Water Splitting. Advanced Energy Materials, 8(21), 1800210. https://doi.org/10.1002/aenm.201800210
Yu, Q., Pan, J., Mei, J., Chen, Z., Wang, P., Wang, P., Wang, J., Song, C., Zheng, Y., & Li, C. (2021). The Cu2O/CuO/SnO2 transparent pn junction film device towards photovoltaic enhancement with Cu2+ self-oxidation transition layer. Journal of Materials Science, 56(9), 5736–5747. https://doi.org/10.1007/s10853-020-05704-1
Zhang, W., Chen, X., Wang, X., Zhu, S., Wang, S., & Wang, Q. (2021). Pulsed electrodeposition of nanostructured polythiothene film for high-performance electrochromic devices. Solar Energy Materials and Solar Cells, 219, 110775. https://doi.org/10.1016/j.solmat.2020.110775
Zhang, Z., Wu, Y., & Zhang, D. (2022). Potentiostatic electrodeposition of cost-effective and efficient Ni–Fe electrocatalysts on Ni foam for the alkaline hydrogen evolution reaction. International Journal of Hydrogen Energy, 47(3), 1425–1434. https://doi.org/10.1016/J.IJHYDENE.2021.10.150
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nur Azlina Adris , Lorna Jeffery Minggu, Rozan Mohamad Yunus, Khuzaimah Arifin, Muhamad Azuwa Mohamed, Mohammad B. Kassim
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.