Exploring the prospects and challenges of underground hydrogen storage for a sustainable energy future

Authors

  • Azlinda Azizi School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Nurul Haziqah Abdul Aziz School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Atikah Kadri School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Nurul Fadhilah Kamalul Aripin School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Fazlena Hamzah School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Nur Sabrina Ahmad Neezam School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Prashant Jadhawar University of Aberdeen, King’s College, Aberdeen, United Kingdom

DOI:

https://doi.org/10.24191/mjcet.v7i1.1363

Keywords:

Renewable energy , Hydrogen, Underground gas storage, Climate control, Hydrogen storage, Sustainable

Abstract

Compared to fossil fuel-based energy sources, renewable energy sources are gaining momentum worldwide due to climate control agreements. The Hydrogen Energy Roadmap proposes to generate hydrogen using renewable energy sources such as hydro, biomass, and solar. However, renewable energy source like hydrogen often has an unstable flow of energy supply, which can lead to temporary underproduction of the required supply. Underground storage options like depleted gas or oil reservoirs, aquifers, and salt caverns are used to address this issue. These underground gas storage alternatives have been used for various applications, including hydrogen storage. Underground hydrogen storage is possible in two geological sites: porous media and cave storage. Salt caverns are suitable for seasonal hydrogen storage at high pressures, while aquifers have the potential for hydrogen storage due to their widespread distribution. However, it is crucial to note that adequate reservoir properties and an impermeable layer are necessary for hydrogen storage in underground structures to prevent gas migration. Microbial and geochemical activities, often overlooked but crucial in hydrogen storage, can pose challenges due to their existence.

References

Akademi Sains Malaysia (2017). The blueprint for Fuel Cell Industries in Malaysia. https://www.akademisains.gov.my/asm-publication/fuel_cell___hydrogen-2017/

Agarwal, R. K., Noh, J. S., Schwarz, J. A., & Davini, P. (1987). Effect of surface acidity of activated carbon on hydrogen storage. Carbon, 25(2), 219–226. https://doi.org/10.1016/0008-6223(87)90119-9

Atta, N. F., Fekry, A. M., & Hassaneen, H. M. (2011). Corrosion inhibition, hydrogen evolution and antibacterial properties of newly synthesized organic inhibitors on 316L stainless steel alloy in acid medium. International Journal of Hydrogen Energy, 36(11), 6462–6471. https://doi.org/10.1016/j.ijhydene.2011.02.134

Babu, A. R. V., Devunuri, N., Manisha, D. R., Prashanthi, Y., Merugu, R. & Teja, A. J. R.R. (2014). Magnesium hydrides for hydrogen storage: A mini review. International Journal of Chemtech Research, 6(7), 974–4290.

Bai, P., Zhao, H., Zheng, S. & Chen, C. (2015). Initiation and developmental stages of steel corrosion in wet H2S environments. Corrosion Science, 93, 109–119. https://doi.org/10.1016/j.corsci.2015.01.024

Basso, O., Lascourreges, J-F., Le Borgne, F., Le Goff, C., & Magot, M. (2009). Characterization by culture and molecular analysis of the microbial diversity of a deep subsurface gas storage aquifer. Research in Microbiology, 160(2), 107–116. https://doi.org/10.1016/j.resmic.2008.10.010

Bayne-Jones, S., & Rhees, H. S. (1929). Bacterial Calorimetry II. relationship of heat production to phases of growth of bacteria. Journal of Bacteriology, 17(2), 123–140. https://doi.org/10.1128/jb.17.2.123-140.1929

Berta, M., Dethlefsen, F., Ebert, M., Schäfer, D., & Dahmke, A. (2018). Geochemical effects of millimolar hydrogen concentrations in groundwater: An experimental study in the context of subsurface hydrogen storage. Environmental Science & Technology, 52(8), 4937–4949. https://doi.org/10.1021/acs.est.7b05467

Borja, R., & Rincón, B. (2017). Biogas production. In Reference module in life sciences (pp.1–24). http://doi.org/10.1016/B978-0-12-809633-8.09105-6

European Commission (2020). A strategy for competitive, sustainable and secure energy, Communication From The Commission To The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions.

Caglayan, D. G., Weber, N., Heinrichs, H. U., Linßen, J., Robinius, M., Kukla, P. A., & Stolten, D. (2020). Technical potential of salt caverns for hydrogen storage in Europe. International Journal of Hydrogen Energy, 45(11), 6793–6805. https://doi.org/10.1016/j.ijhydene.2019.12.161

Chamoun, R., Demirci, U. B., & Miele, P. (2015). Cyclic dehydrogenation–(re)hydrogenation with hydrogen‐storage materials: An overview. Energy Technology, 3(2), 100–117. https://doi.org/10.1002/ente.201402136

Cihlar, J., Mavins, D., & van der Leun, K. (2021). Picturing the value of underground gas storage to the European hydrogen System. Gas Infrastructure Europe . https://www.gie.eu/wp-content/uploads/filr/3517/Picturing the value of gas storage to the European hydrogen system_FINAL_140621.pdf

Crabtree, G. W., Dresselhaus, M. S., & Buchanan, M. V. (2004). The hydrogen economy. Physics Today, 57(12), 39–44. https://doi.org/10.1063/1.1878333

Crotogino, Fritz & Donadei, Sabine & Bünger, Ulrich & Landinger, H. (2010). Large-scale hydrogen underground storage for securing future energy supplies. Proceedings of the 18th World Hydrogen Energy Conferenece, 37–45.

David, E. (2005). An overview of advanced materials for hydrogen Storage. Journal of Materials Processing Technology, 162–163, 169–177. https://doi.org/10.1016/j.jmatprotec.2005.02.027

De Jongh, P. E., & Adelhelm, P. (2010). Nanosizing and nanoconfinement: New strategies towards meeting hydrogen storage goals. Chemsuschem, 3(12), 1332–1348. https://doi.org/10.1002/cssc.201000248

Deveci, M. (2018). Site selection for hydrogen underground storage using interval type-2 hesitant fuzzy sets. International Journal of Hydrogen Energy, 43(19), 9353–9368. https://doi.org/10.1016/j.ijhydene.2018.03.127

Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881–890. https://doi.org/10.3201/eid0809.020063

Dopffel, N., Kögler, F., Hartmann, H., Costea, P. I., Mahler, E., Herold, A., & Alkan, H. (2018). Microbial induced mineral precipitations caused by nitrate treatment for souring control during microbial enhanced oil recovery (MEOR). International Biodeterioration &Biodegradation, 135, 71–79. https://doi.org/10.1016/j.ibiod.2018.09.004

Eckert, R. B., & Skovhus, T. L. (2018). Advances in the application of molecular microbiological methods in the oil and gas industry and links to microbiologically influenced corrosion. International Biodeterioration & Biodegradation, 126, 169–176. https://doi.org/10.1016/j.ibiod.2016.11.019

Edalati, K., Uehiro, R., Ikeda, Y., Li, H.-W., Emami, H., Filinchuk, Y., Arita, M., Sauvage, X., Tanaka, I., Akiba, E., & Horita, Z. (2018). Design and synthesis of a magnesium alloy for room temperature hydrogen storage. Acta Materialia, 149, 88–96. https://doi.org/10.1016/j.actamat.2018.02.033

Edwards, P. P., Kuznetsov, V. L., David, W. I. F., & Brandon, N. P. (2008). Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy, 36(12), &4356–4362. https://doi.org/10.1016/j.enpol.2008.09.036

Eftekhari, A., & Fang, B. (2017). Electrochemical hydrogen storage: Opportunities for fuel storage, batteries, fuel cells, and supercapacitors. International Journal of Hydrogen Energy, 42(40), 25143–25165. https://doi.org/10.1016/j.ijhydene.2017.08.103

El-Shamy, A. M., Soror, T. Y., El-Dahan, H. A., Ghazy, E. A., & Eweas, A. F. (2009). Microbial corrosion inhibition of mild steel in salty water environment. Materials Chemistry and Physics, 114(1), 156–159. https://doi.org/10.1016/j.matchemphys.2008.09.003

Enning, D., & Garrelfs, J. (2014). Corrosion of iron by sulfate-reducing bacteria: New views of an old problem. Applied and Environmental Microbiology, 80(4), 1226–1236. https://doi.org/10.1128/aem.02848-13

Enzmann, F., Mayer, F., Rother, M., & Holtmann, D. (2018). Methanogens: Biochemical background and biotechnological applications. AMB Express, 8(1). https://doi.org/10.1186/s13568-017-0531-x

Etiope, G., Schoell, M., & Hosgörmez, H. (2011). Abiotic methane flux from the Chimaera seep and Tekirova Ophiolites (Turkey): Understanding gas exhalation from low temperature serpentinization and implications for Mars. Earth and Planetary Science Letters, 310(1–2), 96–104. https://doi.org/10.1016/j.epsl.2011.08.001

Evans, D. J., & Chadwick, R. A. (2009). Underground Gas Storage: An introduction and UK perspective. Geological Society, London, Special Publications, 313(1), 1–11. https://doi.org/10.1144/SP313.1

Foh, S., Novil, M., Rockar, E., & Randolph, P. (1979). Underground Hydrogen Storage. Final Report. [Salt Caverns, Excavated Caverns, Aquifers and Depleted Fields]( BNL-51275). Brookhaven National Lab. https://doi.org/10.2172/6536941

Gregory, S., Barnett, M., Field, L., & Milodowski, A. (2019). Subsurface microbial hydrogen cycling: Natural occurrence and implications for industry. Microorganisms, 7(2), 53. https://doi.org/10.3390/microorganisms7020053

Hassan, Q., Sameen, A. Z., Salman, H. M., Jaszczur, M., & Al-Jiboory, A. K. (2023). Hydrogen Energy Future: Advancements in storage technologies and implications for sustainability. Journal of Energy Storage, 72, 108404. https://doi.org/10.1016/j.est.2023.108404

Hematpur, H., Abdollahi, R., Rostami, S., Haghighi, M., & Blunt, M. J. (2023). Review of underground hydrogen storage: Concepts and challenges. Advances in Geo-Energy Research, 7(2), 111–131. https://doi.org/10.46690/ager.2023.02.05

Hirscher, M., Züttel, A., & Schlapbach, L. (2010). Handbook of Hydrogen Storage:New Materials for Future Energy Storage, 202. https://doi.org/10.1002/9783527629800

Hwang, H. T., & Varma, A. (2014). Hydrogen storage for fuel cell vehicles. Current Opinion in Chemical Engineering, 5, 42–48. https://doi.org/10.1016/j.coche.2014.04.004

Iordache, I., Schitea, D., Gheorghe, A. V., & Iordache, M. (2014a). Hydrogen underground storage in Romania, potential directions of development, stakeholders and general aspects. International Journal of Hydrogen Energy, 39(21), 11071–11081. https://doi.org/10.1016/j.ijhydene.2014.05.067

Iordache, I., Schitea, D., Gheorghe, A. V., & Iordache, M. (2014b). Hydrogen underground storage in Romania, potential directions of development, stakeholders and general aspects. International Journal of Hydrogen Energy, 39(21), 11071–11081. https://doi.org/10.1016/j.ijhydene.2014.05.067

Iordache, M.-D., Bioucas-Dias, J. M., & Plaza, A. (2014c). Collaborative sparse regression for hyperspectral Unmixing. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 341–354. https://doi.org/10.1109/tgrs.2013.2240001

Iordache, M., Schitea, D., Deveci, M., Akyurt, İ. Z., & Iordache, I. (2019). An integrated aras and interval type-2 hesitant fuzzy sets method for underground site selection: Seasonal hydrogen storage in salt caverns. Journal of Petroleum Science and Engineering, 175, 1088–1098. https://doi.org/10.1016/j.petrol.2019.01.051

Janot, R., Latroche, M., & Percheron-Guégan, A. (2005). Development of a hydrogen absorbing layer in the outer shell of high pressure hydrogen tanks. Materials Science and Engineering: B, 123(3), 187–193. https://doi.org/10.1016/j.mseb.2005.07.016

Javaherdashti, R., & Alasvand, K. (2019). Biological treatment of microbial corrosion: Opportunities and challenges. Elsevier. https://doi.org/10.1016/C2017-0-04219-2

Jia, Y., Sun, C., Shen, S., Zou, J., Mao, S. S., & Yao, X. (2015). Combination of nanosizing and interfacial effect: Future perspective for designing MG-based nanomaterials for hydrogen storage. Renewable and Sustainable Energy Reviews, 44, 289–303. https://doi.org/10.1016/j.rser.2014.12.032

Jorgensen, S. W. (2011). Hydrogen storage tanks for vehicles: Recent progress and current status. Current Opinion in Solid State and Materials Science, 15(2), 39–43. https://doi.org/10.1016/j.cossms.2010.09.004

Kalam, S., Abu-Khamsin, S. A., Kamal, M. S., Abbasi, G. R., Lashari, N., Patil, S., & Abdurrahman, M. (2023). A Mini-Review on underground hydrogen storage: Production to field studies. Energy & Fuels, 37(12), 8128–8141. https://doi.org/10.1021/acs.energyfuels.3c00841

Kaya, E., Dasdemir, G., Mustafov, S. D., Goksu, H., Gerengi, H., & Sen, F. (2021). Nanocatalysts for hydrogen evolution reactions from hydrazine borane. Nanomaterials for Hydrogen Storage Applications, 197–218. https://doi.org/10.1016/b978-0-12-819476-8.00015-3

Kleinitz, W. & Böhling, E. (2005). Underground gas storage in porous media - operating experience with bacteria on gas quality. All Days. https://doi.org/10.2118/94248-ms

Kruck, O., Crotogino, F., Prelicz, R. & Rudolph, T. (2013). Assessment of the potential, the actors and relevant business cases for large scale and seasonal storage of renewable electricity by hydrogen underground storage in Europe. Environmental Science.

Kryachko, Y. (2018). Novel approaches to microbial enhancement of oil recovery. Journal of Biotechnology, 266, 118–123. https://doi.org/10.1016/j.jbiotec.2017.12.019

Lafortune, S., Gombert, P., Pokryszka, Z., Lacroix, E., Donato, P. De, & Jozja, N. (2020). Monitoring scheme for the detection of hydrogen leakage from a deep underground storage. Part 1: On-site validation of an experimental protocol via the combined injection of helium and tracers into an aquifer. Applied Sciences, 10(17), 6058. https://doi.org/10.3390/app10176058

Lagmöller, L., Dahmke, A., Ebert, M., Metzgen, A., Schäfer, D. & Dethlefsen, F. (2019). Geochemical effects of hydrogen intrusions into shallow groundwater—An incidence scenario from underground gas storage[PowerPoint slides]. https://www.uee.uliege.be/cms/c_3483013/en/urban-environmental-engineering

Lai, Q., Paskevicius, M., Sheppard, D. A., Buckley, C. E., Thornton, A. W., Hill, M. R., Gu, Q., Mao, J., Huang, Z., Liu, H. K., Guo, Z., Banerjee, A., Chakraborty, S., Ahuja, R., & Aguey‐Zinsou, K. (2015). Hydrogen storage materials for mobile and stationary applications: Current state of the art. Chemsuschem, 8(17), 2789–2825. https://doi.org/10.1002/cssc.201500231

Lian, K. F. (2018). The implications of the Paris Climate Agreement for Malaysia. International Journal of Science Arts and Commerce, 3, 27–239.

Liebscher, A., Wackerl, J., & Streibel, M. (2016). Chapter 26–Geologic storage of hydrogen–Fundamentals, processing, and projects. In D. Stolten & B. Emonts (Eds.), Hydrogen science and engineering: materials, processes, systems and technology (pp. 629–658). Wiley. https://doi.org/10.1002/9783527674268.ch26

Lim, K. L., Kazemian, H., Yaakob, Z., & Daud, W. R. (2010). Solid‐state materials and methods for hydrogen storage: A critical review. Chemical Engineering & Technology, 33(2), 213–226. https://doi.org/10.1002/ceat.200900376

Lord, A. S., Kobos, P. H., & Borns, D. J. (2014). Geologic storage of hydrogen: Scaling up to meet city transportation demands. International Journal of Hydrogen Energy, 39(28), 15570–15582. https://doi.org/10.1016/j.ijhydene.2014.07.121

MacDonald, B. D., & Rowe, A. M. (2006). A thermally coupled metal hydride hydrogen storage and fuel cell system. Journal of Power Sources, 161(1), 346–355. https://doi.org/10.1016/j.jpowsour.2006.04.018

Martin, D., Dodds, K., Butler, I. B., & Ngwenya, B. T. (2013). Carbonate precipitation under pressure for bioengineering in the anaerobic subsurface via denitrification. Environmental Science & Technology, 130709154540005. https://doi.org/10.1021/es401270q

Mazloomi, K., & Gomes, C. (2012). Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews, 16(5), 3024–3033. https://doi.org/10.1016/j.rser.2012.02.028

Mazzolai, G. (2012). Perspectives and challenges for solid state hydrogen storage in automotive applications. Recent Patents on Materials Science, 5(2), 137–148. https://doi.org/10.2174/1874465611205020137

Michalski, J., Bünger, U., Crotogino, F., Donadei, S., Schneider, G.-S., Pregger, T., Cao, K.-K., & Heide, D. (2017). Hydrogen generation by electrolysis and storage in salt caverns: Potentials, economics and systems aspects with regard to the German energy transition. International Journal of Hydrogen Energy, 42(19), 13427–13443. https://doi.org/10.1016/j.ijhydene.2017.02.102

Midilli, A., Ay, M., Dincer, I., & Rosen, M. A. (2005). On hydrogen and hydrogen energy strategies. Renewable and Sustainable Energy Reviews, 9(3), 255–271. https://doi.org/10.1016/j.rser.2004.05.003

Niaz, S., Manzoor, T., & Pandith, A. H. (2015). Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews, 50, 457–469. https://doi.org/10.1016/j.rser.2015.05.011

Noh, J. S., Agarwal, R. K., & Schwarz, J. A. (1987). Hydrogen storage systems using activated carbon. International Journal of Hydrogen Energy, 12(10), 693–700. https://doi.org/10.1016/0360-3199(87)90132-7

Oren, A. (2008). Microbial life at high salt concentrations: Phylogenetic and metabolic diversity. Saline Systems, 4(1), 2. https://doi.org/10.1186/1746-1448-4-2

Ozarslan, A. (2012). Large-scale hydrogen energy storage in Salt Caverns. International Journal of Hydrogen Energy, 37(19), 14265–14277. https://doi.org/10.1016/j.ijhydene.2012.07.111

Ozturk, T., & Demirbas, A. (2007). Boron compounds as hydrogen storage materials. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 29(15), 1415–1423. https://doi.org/10.1080/00908310500434572

Pallud, C., & Van Cappellen, P. (2006). Kinetics of microbial sulfate reduction in estuarine sediments. Geochimica et Cosmochimica Acta, 70(5), 1148–1162. https://doi.org/10.1016/j.gca.2005.11.002

Panella, B., Hirscher, M., & Roth, S. (2005). Hydrogen adsorption in different carbon nanostructures. Carbon, 43(10), 2209–2214. https://doi.org/10.1016/j.carbon.2005.03.037

Panfilov, M., Gravier, G., & Fillacier, S. (2006). Underground storage of H2 and H2-CO2-CH4 mixtures. ECMOR X-10th European Conference on the Mathematics of Oil Recovery, cp-23-00003. https://doi.org/10.3997/2214-4609.201402474

Pesonen, O. & Alakunnas, T. (2017). Energy storage : A missing piece of the puzzle for the self-sufficient living. Publication series B: Research reports and Compilations Publication Series 12/2017. UAS Publication Series B. https://urn.fi/URN:ISBN:978-952-316-186-3

Pfeiffer, W. T., & Bauer, S. (2015). Subsurface porous media hydrogen storage – scenario development and simulation. Energy Procedia, 76, 565–572. https://doi.org/10.1016/j.egypro.2015.07.872

Posso, F., Galeano, M., Baranda, C., Franco, D., Rincón, A., Zambrano, J., Cavaliero, C., & Lópes, D. (2022). Towards the hydrogen economy in Paraguay: Green hydrogen production potential and end-uses. International Journal of Hydrogen Energy, 47(70), 30027–30049. https://doi.org/10.1016/j.ijhydene.2022.05.217

Prachi, P. R., Wagh Mahesh M., Gangal Aneesh C. (2016). A review on solid state hydrogen storage material. Advances in Energy and Power, 44(2), 11–22. https://doi.org/10.13189/aep.2016.040202

Rahman, M. N., & Wahid, M. A. (2021). Renewable-based zero-carbon fuels for the use of power generation: A case study in Malaysia supported by updated developments worldwide. Energy Reports, 7, 1986–2020. https://doi.org/10.1016/j.egyr.2021.04.005

Read, C., Thomas, G., Ordaz, G., & Satyapal, S. (2007). U.S. Department of Energy's system targets for on-board vehicular hydrogen storage, Materials Matters, 2, Article 2. https://www.sigmaaldrich.com/MY/en/technical-documents/technical-article/materials-science-and-engineering/batteries-supercapacitors-and-fuel-cells/on-board-vehicular-hydrogen-storage

Reitenbach, V., Ganzer, L., Albrecht, D., & Hagemann, B. (2015). Influence of added hydrogen on underground gas storage: A review of key issues. Environmental Earth Sciences, 73(11), 6927–6937. https://doi.org/10.1007/s12665-015-4176-2

Sadhasivam, T., Kim, H.-T., Jung, S., Roh, S.-H., Park, J.-H., & Jung, H.-Y. (2017). Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A Review. Renewable and Sustainable Energy Reviews, 72, 523–534. https://doi.org/10.1016/j.rser.2017.01.107

Sáez-Martínez, F. J., Lefebvre, G., Hernández, J. J., & Clark, J. H. (2016). Drivers of sustainable cleaner production and sustainable energy options. Journal of Cleaner Production, 138, 1–7. https://doi.org/10.1016/j.jclepro.2016.08.094

Sahaym, U., & Norton, M. G. (2008). Advances in the application of nanotechnology in enabling a hydrogen economy. Journal of Materials Science, 43(16), 5395–5429. https://doi.org/10.1007/s10853-008-2749-0

Sainz-Garcia, A., Abarca, E., Rubi, V., & Grandia, F. (2017). Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer. International Journal of Hydrogen Energy, 42(26), 16657–16666. https://doi.org/10.1016/j.ijhydene.2017.05.076

Sakintuna, B., Lamaridarkrim, F., & Hirscher, M. (2007). Metal hydride materials for solid hydrogen storage: A Review. International Journal of Hydrogen Energy, 32(9), 1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022

Salameh, C. M. (2014). Synthesis of boron or aluminum based functional nitrides for energy applications (Hydrogen production and storage)( NNT: 2014MON20157. tel-01743835v2) [Doctoral Thesis, Université Montpellier II-Sciences et Techniques du Languedoc]HAL Open Science. https://theses.hal.science/tel-01743835v2

Sato, K., Kawaguchi, H., & Kobayashi, H. (2013). Bio-electrochemical conversion of carbon dioxide to methane in geological storage reservoirs. Energy Conversion and Management, 66, 343–350. https://doi.org/10.1016/j.enconman.2012.12.008

Schitea, D., Deveci, M., Iordache, M., Bilgili, K., Akyurt, İ. Z., & Iordache, I. (2019). Hydrogen Mobility Roll-up site selection using intuitionistic fuzzy sets based WASPAS, COPRAS and EDAS. International Journal of Hydrogen Energy, 44(16), 8585–8600. https://doi.org/10.1016/j.ijhydene.2019.02.011

Seo, S.-K., Yun, D.-Y., & Lee, C.-J. (2020). Design and optimization of a hydrogen supply chain using a centralized storage model. Applied Energy, 262, 114452. https://doi.org/10.1016/j.apenergy.2019.114452

Shafaat, H. S., Rüdiger, O., Ogata, H., & Lubitz, W. (2013). [NiFe] hydrogenases: A common active site for hydrogen metabolism under diverse conditions. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1827(8–9), 986–1002. https://doi.org/10.1016/j.bbabio.2013.01.015

Shan, Xi & Payer, Joe & Jennings, Wayne. (2009). Mechanism of increased performance and durability of Pd-treated metal hydriding alloys. International Journal of Hydrogen Energy, 34(1). 363–369. https://doi.org/10.1016/j.ijhydene.2008.09.040

Sharma, S., & Ghoshal, S. K. (2015). Hydrogen the future transportation fuel: From production to applications. Renewable and Sustainable Energy Reviews, 43, 1151–1158. https://doi.org/10.1016/j.rser.2014.11.093

Sharma, V. K., & Anil Kumar, E. (2017). Metal hydrides for Energy Applications - classification, PCI characterisation and simulation. International Journal of Energy Research, 41(7), 901–923. https://doi.org/10.1002/er.3668

Sharma, V. K., & Kumar, E. A. (2018). Metal hydrides. Kirk-Othmer Encyclopedia of Chemical Technology, 1–21. https://doi.org/10.1002/0471238961.koe00039

Sheriff, S. A., Yogi, S. D., Stefanakos, E. & Steinfield, A. (Eds.). (2014). Handbook of Hydrogen Energy (1st Edition). CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b17226

Skovhus, T. L., Enning, D., & Lee, J. S. (Eds.). (2017). Microbiologically influenced corrosion in the upstream oil and gas industry (1st Edition). CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9781315157818

Sleiman, S., & Huot, J. (2017). Microstructure and hydrogen storage properties of Ti1V0.9Cr1.1 alloy with addition of x wt% Zr (x = 0, 2, 4, 8, and 12). Inorganics, 5(4), 86. https://doi.org/10.3390/inorganics5040086

Solomon, S. , Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H.L (Eds.). (2007). AR4 Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change IPCC. https://www.ipcc.ch/report/ar4/wg1/

Stone, H. B., Veldhuis, I., & Richardson, R. N. (2009). Underground hydrogen storage in the UK. Geological Society, London, Special Publications, 313(1), 217–226. https://doi.org/10.1144/sp313.13

Strobel, G., Hagemann, B., Huppertz, T. M., & Ganzer, L. (2020). Underground bio-methanation: Concept and potential. Renewable and Sustainable Energy Reviews, 123, 109747. https://doi.org/10.1016/j.rser.2020.109747

Tarkowski, R. (2019). Underground hydrogen storage: Characteristics and prospects. Renewable and Sustainable Energy Reviews, 105, 86–94. https://doi.org/10.1016/j.rser.2019.01.051

Tarkowski, R. & Czapowski, G. (2018). Salt domes in Poland – potential sites for hydrogen storage in caverns. International Journal of Hydrogen Energy, 43(46), 21414–21427. https://doi.org/10.1016/j.ijhydene.2018.09.212

Truche, L., Joubert, G., Dargent, M., Martz, P., Cathelineau, M., Rigaudier, T., & Quirt, D. (2018). Clay minerals trap hydrogen in the Earth’s crust: Evidence from the Cigar Lake Uranium Deposit, Athabasca. Earth and Planetary Science Letters, 493, 186–197. https://doi.org/10.1016/j.epsl.2018.04.038

Umegaki, T., Yan, J.-M., Zhang, X.-B., Shioyama, H., Kuriyama, N., & Xu, Q. (2009). Boron- and nitrogen-based chemical hydrogen storage materials. International Journal of Hydrogen Energy, 34(5), 2303–2311. https://doi.org/10.1016/j.ijhydene.2009.01.002

United-Nations (2015). United Nations, "Paris Agreement, United Nations Treaty Collection".

US Department of Energy. (2017). DOE Technical Targets For Onboard Hydrogen Storage For Light-Duty Vehicles. Office of Energy Efficiency & Renewable Energy, US Department of Energy. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles

Wagemans, R. W., van Lenthe, J. H., de Jongh, P. E., van Dillen, A. J., & de Jong, K. P. (2005). Hydrogen storage in magnesium clusters: Quantum Chemical Study. Journal of the American Chemical Society, 127(47), 16675–16680. https://doi.org/10.1021/ja054569h

Webb, C. J. (2015). A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. Journal of Physics and Chemistry of Solids, 84, 96–106. https://doi.org/10.1016/j.jpcs.2014.06.014

Wolf, E. (2015). Large-scale hydrogen energy storage. Electrochemical Energy Storage for Renewable Sources and Grid Balancing, 129–142. https://doi.org/10.1016/b978-0-444-62616-5.00009-7

Wolicka, D., & Borkowski, A. (2007). The geomicrobiological role of sulphate-reducing bacteria in environments contaminated by petroleum products. Geomicrobiology Journal, 24(7–8), 599–607. https://doi.org/10.1080/01490450701672117

Zabranska, J., & Pokorna, D. (2018). Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnology Advances, 36(3), 707–720. https://doi.org/10.1016/j.biotechadv.2017.12.003

Zhang, B., & Wu, Y. (2017). Recent advances in improving performances of the lightweight complex hydrides Li-mg-n-H System. Progress in Natural Science: Materials International, 27(1), 21–33. https://doi.org/10.1016/j.pnsc.2017.01.005

Zhang, F., Zhao, P., Niu, M., & Maddy, J. (2016). The survey of key technologies in Hydrogen Energy Storage. International Journal of Hydrogen Energy, 41(33), 14535–14552. https://doi.org/10.1016/j.ijhydene.2016.05.293

Zhang, Y., Li, J., Zhang, T., Wu, T., Kou, H., & Xue, X. (2017). Hydrogenation thermokinetics and activation behavior of non-stoichiometric zr-based laves alloys with enhanced hydrogen storage capacity. Journal of Alloys and Compounds, 694, 300–308. https://doi.org/10.1016/j.jallcom.2016.10.021

Zhang, Yang-huan, Jia, Z., Yuan, Z., Yang, T., Qi, Y., & Zhao, D. (2015). Development and application of hydrogen storage. Journal of Iron and Steel Research International, 22(9), 757–770. https://doi.org/10.1016/s1006-706x(15)30069-8

Züttel, A. (2003). Materials for hydrogen storage. Materials Today, 6(9), 24–33. https://doi.org/10.1016/s1369-7021(03)00922-2

Downloads

Published

2024-04-30

How to Cite

Azizi, A., Abdul Aziz, N. H., Kadri, A., Kamalul Aripin, N. F., Hamzah, F. ., Ahmad Neezam, N. S. ., & Jadhawar, P. . (2024). Exploring the prospects and challenges of underground hydrogen storage for a sustainable energy future. Malaysian Journal of Chemical Engineering &Amp; Technology, 7(1), 27–48. https://doi.org/10.24191/mjcet.v7i1.1363