Separation methods in the food industry: An exploration of reverse osmosis, evaporation and freeze concentration applications

Authors

  • Nurul Amalia Farhana Abu Bakar
  • Farah Hanim Ab Hamid

DOI:

https://doi.org/10.24191/mjcet.v6i2.17787

Keywords:

separation methods, evaporation, reverse osmosis, freeze concentration, food industry

Abstract

Separation method is broadly used in various industries, mainly in the food industry. Some of the applications include retaining the nutrients and concentrating fruit juices, liquid foods, and milk products. Fundamentally, the concentrated liquid product is achieved by these separation methods. Technology advances daily, impacting food quality characteristics such as flavour, colour, and texture. Production and commercialisation processes are key considerations, from conventional to modern approaches. Hence, this study aims to review the various types of separation methods with their application in food industries which are evaporation, reverse osmosis, and freeze concentration that is separated into two: suspension freeze concentration and progressive freeze concentration. 

References

Ab. Hamid, F. H., Zakaria, Z. Y., Ngadi, N., & Jusoh, M. (2015). Application of progressive freeze concentration for water purification using rotating crystallizer with anti-supercooling holes. IPCBEE, 83(7), 41–47. https://doi.org/10.7763/IPCBEE. 2015. V83. 7

Ab Hamid, F. H., A. Rahim, N., Johari, A., Ngadi, N., Yamani Zakaria, Z., & Jusoh, M. (2015). Desalination of seawater through progressive freeze concentration using a coil crystallizer. Water Science & Technology: Water Supply, 15(3), 625–631. https://doi.org/10.2166/ws.2015.019

Ab Hamid, F. H., Ibrahim, N. S., & Mohd Zolfakar, M. N. (2019). Progressive freeze concentration in removing methylene blue from dye wastewater. International Journal of Applied Science and Engineering, 16(3), 229–239. https://doi.org/10.6703/IJASE.201911_16(3).231

Ab Hamid, F. H., & Jami, S. N. (2019). Progressive freeze concentration for wastewater treatment from food industry. Key Engineering Materials, 797, 55–64. https://doi.org/10.4028/www.scientific.net/kem.

Ab Hamid, F. H., & Jusoh, M. (2013). anti-supercooling holes as a physical approach in preventing supercooling phenomenon in progressive freeze concentration. 4th International Graduate Conference on Engineering Science and Humanities, 599–602.

Adorno, W. T., Rezzadori, K., Arend, G. D., Chaves, V. C., Reginatto, F. H., Di Luccio, M., & Petrus, J. C. C. (2017). Enhancement of phenolic compounds content and antioxidant activity of strawberry (Fragaria × ananassa) juice by block freeze concentration technology. International Journal of Food Science and Technology, 52(3), 781–787. https://doi.org/10.1111/ijfs.13335

Aider, M., & de Halleux, D. (2008). Production of concentrated cherry and apricot juices by cryoconcentration technology. LWT - Food Science and Technology, 41(10), 1768–1775. https://doi.org/10.1016/j.lwt.2008.02.008

Alves, V. D., & Coelhoso, I. M. (2002). Mass transfer in osmotic evaporation: Effect of process parameters. Journal of Membrane Science, 208(1–2), 171–179. https://doi.org/10.1016/S0376-7388(02)00230-2

Alves, V. D., & Coelhoso, I. M. (2006). Orange juice concentration by osmotic evaporation and membrane distillation: A comparative study. Journal of Food Engineering, 74(1), 125–133. https://doi.org/10.1016/j.jfoodeng.2005.02.019

Amran, N. A., & Jusoh, M. (2013). Friction study on vertical finned crystallizer for progressive freeze concentration system. 4th International Graduate Conference on Engineering Science and Humanities, 618–622.

Amran, N. A., & Jusoh, M. (2016). Effect of coolant temperature and circulation flowrate on the performance of a vertical finned crystallizer. Procedia Engineering, 148, 1408–1415. https://doi.org/10.1016/j.proeng.2016.06.576

Arend, G. D., Castoldi, S. M., Rezzadori, K., Soares, L. S., & Brião, V. B. (2019). Concentration of skim milk by reverse osmosis: Characterization and flow decline modelling. Brazilian Journal of Food Technology, 22, 1–12. https://doi.org/10.1590/1981-6723.02819

Assawarachan, R., & Noomhorm, A. (2010). Changes in color and rheological behavior of pineapple concentrate through various evaporation methods. International Journal of Agricultural and Biological Engineering, 3(1), 74–84. https://doi.org/10.3965/j.issn.1934-6344.2010.01.074-084

Azzaro-Pantel, C., Madoumier, M., & Gésan-Guiziou, G. (2022). Development of an ecodesign framework for food manufacturing including process flowsheeting and multiple-criteria decision-making: Application to milk evaporation. Food and Bioproducts Processing, 131, 40-59. https://doi.org/https://doi.org/10.1016/j.fbp.2021.10.003

Balannec, B., Vourch, M., Rabiller-Baudry, M., & Chaufer, B. (2005). Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration. Separation and Purification Technology, 42(2), 195–200. https://doi.org/10.1016/j.seppur.2004.07.013

Bekta, B., & Dirim, S. N. (2016). A survey on the centrifugal freeze concentration method for mulberry molasses. Journal of Food Physics, 28, 57–69.

Belén, F., Sánchez, J., Hernández, E., Auleda, J. M., & Raventós, M. (2012). One option for the management of wastewater from tofu production: Freeze concentration in a falling-film system. Journal of Food Engineering, 110(3), 364–373. https://doi.org/10.1016/j.jfoodeng.2011.12.036

Ben Lakhdar, M., Cerecero, R., Alvarez, G., Guilpart, J., Flick, D., & Lallemand, A. (2005). Heat transfer with freezing in a scraped surface heat exchanger. Applied Thermal Engineering, 25(1), 45–60. https://doi.org/10.1016/j.applthermaleng.2004.05.007

Benedetti, S., Prudêncio, E. S., Nunes, G. L., Guizoni, K., Fogaça, L. A., & Petrus, J. C. C. (2015). Antioxidant properties of tofu whey concentrate by freeze concentration and nanofiltration processes. Journal of Food Engineering, 160, 49–55. https://doi.org/10.1016/j.jfoodeng.2015.03.021

Brans, G., Schroën, C. G. P. H., Van Der Sman, R. G. M., & Boom, R. M. (2004). Membrane fractionation of milk: State of the art and challenges. Journal of Membrane Science, 243(1–2), 263–272. https://doi.org/10.1016/j.memsci.2004.06.029

Brião, V. B., & Tavares, C. R. G. (2012). Scientific Note: Ultrafiltration of effluents from a dairy industry for nutrient recovery: effect of pressure and tangential velocity. Brazilian Journal of Food Technology, 15(4), 352–362. https://doi.org/10.1590/S1981-67232012005000028

Cassano, A., Jiao, B., & Drioli, E. (2004). Production of concentrated kiwifruit juice by integrated membrane process. Food Research International, 37(2), 139–148. https://doi.org/10.1016/j.foodres.2003.08.009

Castro Domingues, R. C., Araújo Ramos, A., Luiz Cardoso, V., & Miranda Rei, M. H. (2014). Microfiltration of passion fruit juice using hollow fibre membranes and evaluation of fouling mechanisms. Journal of Food Engineering, 121, 73–79. https://doi.org/10.1016/j.jfoodeng.2013.07.037

Chollangi, A., & Hossain, M. M. (2007). Separation of proteins and lactose from dairy wastewater. Chemical Engineering and Processing: Process Intensification, 46(5), 398–404. https://doi.org/10.1016/j.cep.2006.05.022

Cisse, M., Vaillant, F., Perez, A., Dornier, M., & Reynes, M. (2005). The quality of orange juice processed by coupling crossf low microfiltration and osmotic evaporation. International Journal of Food Science and Technology, 40(1), 105–116. https://doi.org/10.1111/j.1365-2621.2004.00914.x

Dass & Grenco. (1991). Current large-scale commercial application of freeze concentration in the food industry. European Food & Drink Review, Spring, 19–24.

DBV. (2004). Membrane filtration offers a variety of applications for dairy. https://www.dairyfoods.com/articles/84012-membrane-filtration-offers-a-variety-of-applications-for-dairy-1

De Souza, R. R., Bergamasco, R., da Costa, S. C., Feng, X., Faria, S. H. B., & Gimenes, M. L. (2010). Recovery and purification of lactose from whey. Chemical Engineering and Processing: Process Intensification, 49(11), 1137–1143. https://doi.org/10.1016/j.cep.2010.08.015

Depping, V., Grunow, M., van Middelaar, C., & Dumpler, J. (2017). Integrating environmental impact assessment into new product development and processing-technology selection: Milk concentrates as substitutes for milk powders. Journal of Cleaner Production, 149, 1–10. . https://doi.org/10.1016/j.jclepro.2017.02.070

Deshwal, G. K., Akshit, Kadyan, S., Sharma, H., Singh, A. K., Panjagari, N. R., & Meena, G. S. (2021). Applications of reverse osmosis in dairy processing: an Indian perspective. Journal of Food Science and Technology, 58(10) 3676–3688. https://doi.org/10.1007/s13197-020-04958-6

Ding, Z., Qin, F. G. F., Peng, K., Yuan, J., Huang, S., Jiang, R., & Shao, Y. (2020). Heat and mass transfer of scraped surface heat exchanger used for suspension freeze concentration. Journal of Food Engineering, 288, 1–18. https://doi.org/10.1016/j.jfoodeng.2020.110141

Ding, Z., Qin, F. G. F., Yuan, J., Huang, S., Jiang, R., & Shao, Y. (2019). Concentration of apple juice with an intelligent freeze concentrator. Journal of Food Engineering, 256, 61–72. https://doi.org/10.1016/j.jfoodeng.2019.03.018

Fennema, O. R. (1987). Food Chemistry. The Journal of Nutrition, 117(1), 213–214. https://doi.org/10.1093/jn/117.1.213

Forero-Longas, F., Pulido-Díaz, A. P., & Pedroza-Berrio, K. J. (2017). Computational simulation of concentration by osmotic evaporation of passion fruit juice (Passiflora edullis). Revista Facultad de Ingeniería, 26(44), 95. https://doi.org/10.19053/01211129.v26.n44.2017.5775

Forero, F. L., Vélez, C. A. P., & Sandoval, A. P. A. (2013). Ultrafiltration and osmotic evaporation applied to the concentration of cholupa (passiflora maliformis) juice. Ingenieria e Investigacion, 33(1), 35–40.

Forero Longas, F., & Velez Pasos, C. A. (2011). Analysing transfer phenomena in osmotic evaporation. Ingenieria e Investigacion, 31(3), 40–49.

Fukuma, Y., Yamane, A., Itoh, T., Tsukamasa, Y., & Ando, M. (2012). Application of supercooling to long-term storage of fish meat. Fisheries Science, 78(2), 451–461. https://doi.org/10.1007/s12562-011-0460-6

Garud, R. M., Kore, S. V, Kore, V. S., & Kulkarni, G. S. (2011). A short review on process and applications of reverse osmosis. Universal Journal of Environmental Research and Technology, 1(3), 233–238.

Gu, X., Suzuki, T., & Miyawaki, O. (2006). Limiting partition coefficient in progressive freeze-concentration. Journal of Food Science, 70(9), 546–551. https://doi.org/10.1111/j.1365-2621.2005.tb08317.x

Hernández, E., Raventós, M., Auleda, J. M., & Ibarz, A. (2010). Freeze concentration of must in a pilot plant falling film cryoconcentrator. Innovative Food Science and Emerging Technologies, 11(1), 130–136. https://doi.org/10.1016/j.ifset.2009.08.014

Hongvaleerat, C., Cabral, L. M. C., Dornier, M., Reynes, M., & Ningsanond, S. (2008). Concentration of pineapple juice by osmotic evaporation. Journal of Food Engineering, 88, 548–552. https://doi.org/10.1016/j.jfoodeng.2008.03.017

Hui, Y. (2004). Principles of freeze-concentration and freeze-drying. In Handbook of Frozen Foods (1st editio, pp. 55). Marcel Dekker, Inc.

Ibrahim, G., El-Ghorab, A., El-Massry, K., & Osman, F. (2012). Effect of microwave heating on flavour generation and food processing. Intech, 32, 137–144. https://doi.org/10.5772/49935

James, B. J., Jing, Y., & Chen, X. D. (2003). Membrane fouling during filtration of milk - A microstructural study. Journal of Food Engineering, 60(4), 431–437. https://doi.org/10.1016/S0260-8774(03)00066-9

Jhanwar, A., & Ward, R. E. (2014). Particle size distribution and lipid composition of skim milk lipid material. International Dairy Journal, 36(2), 110–117. https://doi.org/10.1016/j.idairyj.2014.01.010

Johnson, J., Braddock, R. J., & Chen, C. S. (1995). Kinetics of ascorbic acid loss and nonenzymatic browning in orange juice serum: experimental rate constants. Journal of Food Science, 60(3), 502–505. https://doi.org/10.1111/j.1365-2621.1995.tb09812.x

Jönsson, A. S., & Trägårdh, G. (1990). Ultrafiltration applications. Desalination, 77, 135–179. https://doi.org/10.1016/0011-9164(90)85024-5

Jusoh, M., Yunus, M., & Hassan, M. A. A. B. U. (2008). Effect of initial concentration of solution and coolant temperature on a new progressive freeze concentration system. Journal of Chemical and Natural Resources Engineering, 2, 122–129.

Jusoh, M., Mohd Youns, R., & Abu Hassan, M. A. (2008). Effect of flowrate and coolant temperature on the efficiency of progressive freeze concentration on simulated wastewater. International Journal of Chemical and Molecular Engineering, 2(11), 308–311.

Jusoh, M., Yunus, R. M., & Abu Hassan, M. A. (2009). Performance investigation on a new design for progressive freeze concentration system. Journal of Applied Sciences, 9(17), 3171–3175. https://doi.org/10.3923/jas.2009.3171.3175

Jusoh, M., & Mohamed Nor, N. N. (2014). Progressive freeze concentration of coconut water: Effect of circulation flowrate and circulation time. Jurnal Teknologi (Sciences and Engineering), 67(3), 91–96. https://doi.org/10.11113/jt.v67.2770

Jusoh, M., Yahya, N., Hamid, F. H. A., & Safiei, N. Z. (2014a). Effect of coolant temperature on progressive freeze concentration of refined, bleached and deodorised palm oil. Jurnal Teknologi (Sciences and Engineering), 69(4), 23–27. https://doi.org/10.11113/jt.v69.3168

Jusoh, M., Mohamed Nor, N. N., & Yamani Zakaria, Z. (2014b). Progressive freeze concentration of coconut water. Jurnal Teknologi (Sciences and Engineering), 67(2), 45–49. https://doi.org/10.11113/jt.v67.2734

Krebs, L., Pouliot, Y., Doyen, A., Venema, K., & Brisson, G. (2023). Effect of reverse osmosis and ultra-high-pressure homogenization on the composition and microstructure of sweet buttermilk. Journal of Dairy Science, 106(3), 1596–1610. https://doi.org/https://doi.org/10.3168/jds.2022-22483

Kunz, W., Benhabiles, A., & Ben-Aïm, R. (1996). Osmotic evaporation through macroporous hydrophobic membranes: A survey of current research and applications. Journal of Membrane Science, 121(1), 25–36. https://doi.org/10.1016/0376-7388(96)00153-6

Lazarides, H. N., & Katsanidis, E. (2003). Membrane techniques: principles of reverse osmosis. In L. Trugo & M. Finglas (Eds.), Encyclopedia of Food Sciences and Nutrition (2nd. ed., pp. 3827–3833). https://doi.org/10.1002/chin.200512262

Li, X., Zheng, F., Mohammadi, R., Jazebizadeh, M. H., & Semiromi, D. (2022). Performance evaluation of polyamide reverse osmosis membranes incorporated silica nanoparticles for concentrating peach juice: An invitro evaluation. Food Bioscience, 48, 101814. https://doi.org/https://doi.org/10.1016/j.fbio.2022.101814

Liu, L., Fujii, T., Hayakawa, K., & Miyawaki, O. (1998). Prevention of initial supercooling in progressive freeze-concentration. Bioscience, Biotechnology and Biochemistry, 62(12), 2467–2469. https://doi.org/10.1271/bbb.62.2467

Macedo Y Ramírez, R. C., & Vélez Ruiz, J. F. (2021). Experimentation and modeling of convective heat transfer coefficient for evaporation of liquid foods in a pilot plant double effect. International Journal of Food Engineering, 17(5), 345–354. https://doi.org/10.1515/ijfe-2020-0174

Magwaza, L. S., & Opara, U. L. (2015). Analytical methods for determination of sugars and sweetness of horticultural products-A review. Scientia Horticulturae, 184, 179–192. https://doi.org/10.1016/j.scienta.2015.01.001

Marques, M. P., Alves, V. D., & Coelhoso, I. M. (2017). Concentration of tea extracts by osmotic evaporation: Optimisation of process parameters and effect on antioxidant activity. Membranes, 7(1), 1–14. https://doi.org/10.3390/membranes7010001

Maskan, M. (2006). Production of pomegranate (Punica granatum L.) juice concentrate by various heating methods: Colour degradation and kinetics. Journal of Food Engineering, 72(3), 218–224. https://doi.org/10.1016/j.jfoodeng.2004.11.012

Mazli, W. N. A., Samsuri, S., & Amran, N. A. (2020). Study of progressive freeze concentration and eutectic freeze crystallization technique for salt recovery. IOP Conference Series: Materials Science and Engineering, 778(1), 1–9. https://doi.org/10.1088/1757-899X/778/1/012167

Mehta, B. M. (2015). Chemical composition of milk and milk products. In P. Cheung, & B. Mehta (Eds.), Handbook of Food Chemistry (pp. 511–553). https://doi.org/10.1007/978-3-642-36605-5_31

Mercali, G. D., Schwartz, S., Marczak, L. D. F., Tessaro, I. C., & Sastry, S. (2014). Ascorbic acid degradation and color changes in acerola pulp during ohmic heating: Effect of electric field frequency. Journal of Food Engineering, 123, 1–7. https://doi.org/10.1016/j.jfoodeng.2013.09.011

Meyer, P., Hartinger, M., Sigler, S., & Kulozik, U. (2017). Concentration of milk and whey by membrane technologies in alternative cascade modes. Food and Bioprocess Technology, 10(4), 674–686. https://doi.org/10.1007/s11947-016-1848-1

Miyawaki, O., Omote, C., Gunathilake, M., Ishisaki, K., Miwa, S., Tagami, A., & Kitano, S. (2016). Integrated system of progressive freeze-concentration combined with partial ice-melting for yield improvement. Journal of Food Engineering, 184, 38–43. https://doi.org/10.1016/j.jfoodeng.2016.03.019

Miyawaki, O., & Inakuma, T. (2021). Development of progressive freeze concentration and its application: A review. Food and Bioprocess Technology, 14(1), 39–51. https://doi.org/10.1007/s11947-020-02517-7

Mohd Rosli, N. N. H., Harun, N. H., Abdul Rahman, R., Ngadi, N., Samsuri, S., Amran, N. A., Safiei, N. Z., Ab Hamid, F. H., Zakaria, Z. Y., & Jusoh, M. (2022). Preservation of total phenolic content (TPC) in cucumber juice concentrate using non-thermal progressive freeze concentration: Quantitative design characteristics and process optimization. Journal of Cleaner Production, 330, 129705. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.129705

Opara, U. L., & Pathare, P. B. (2014). Bruise damage measurement and analysis of fresh horticultural produce-A review. Postharvest Biology and Technology, 91, 9–24. https://doi.org/10.1016/j.postharvbio.2013.12.009

Orellana-Palma, P., Petzold, G., Andana, I., Torres, N., & Cuevas, C. (2017). Retention of ascorbic acid and solid concentration via centrifugal freeze concentration of orange juice. Journal of Food Quality, 4, 1–7. https://doi.org/10.1155/2017/5214909

Orellana-Palma, P., González, Y., & Petzold, G. (2019a). Improvement of centrifugal cryoconcentration by ice recovery applied to orange juice. Chemical Engineering and Technology, 42(2), 1–15. https://doi.org/10.1002/ceat.201800639

Orellana-Palma, P., Takhar, P. S., & Petzold, G. (2019b). Increasing the separation of block cryoconcentration through a novel centrifugal filter-based method. Separation Science and Technology (Philadelphia), 54(5), 786–794. https://doi.org/10.1080/01496395.2018.1512615

Patel, S. R., & Murthy, Z. V. P. (2012). Lactose recovery processes from whey: A comparative study based on sonocrystallization. Separation and Purification Reviews, 41(4), 251–266. https://doi.org/10.1080/15422119.2011.594142

Petzold, G., & Aguilera, J. M. (2013). Centrifugal freeze concentration. Innovative Food Science and Emerging Technologies, 20, 253–258. https://doi.org/10.1016/j.ifset.2013.05.010

Petzold, G., Moreno, J., Lastra, P., Rojas, K., & Orellana, P. (2015). Block freeze concentration assisted by centrifugation applied to blueberry and pineapple juices. Innovative Food Science and Emerging Technologies, 30, 192–197. https://doi.org/10.1016/j.ifset.2015.03.007

Petzold, G., Orellana, P., Moreno, J., & Valeria, P. (2019). Physicochemical properties of cryoconcentrated orange juice. Chemical Engineering Transactions, 75, 37–42. https://doi.org/10.3303/CET1975007

Qin, F., Chen, X. D., Ramachandra, S., & Free, K. (2006). Heat transfer and power consumption in a scraped-surface heat exchanger while freezing aqueous solutions. Separation and Purification Technology, 48(2), 150–158. https://doi.org/10.1016/j.seppur.2005.07.018

Qin, F. G. F., Ding, Z., Peng, K., Yuan, J., Huang, S., Jiang, R., & Shao, Y. (2021). Freeze concentration of apple juice followed by centrifugation of ice packed bed. Journal of Food Engineering, 291, 1–30. .https://doi.org/10.1016/j.jfoodeng.2020.110270

Rahman, M. S., Ahmed, M., & Chen, X. D. (2006). Freezing-melting process and desalination: I. review of the state-of-the-art. Separation and Purification Reviews, 35(2), 59–96. https://doi.org/10.1080/15422110600671734

Rao, C. S., & Hartel, R. W. (2006). Scraped surface heat exchangers. Critical Reviews in Food Science and Nutrition, 46(3), 207–219. https://doi.org/10.1080/10408390500315561

Rattanathanalerk, M., Chiewchan, N., & Srichumpoung, W. (2005). Effect of thermal processing on the quality loss of pineapple juice. Journal of Food Engineering, 66(2), 259–265. https://doi.org/10.1016/j.jfoodeng.2004.03.016

Rempel, A. W., Waddington, E. D., Wettlaufer, J. S., & Worster, M. G. (2001). Possible displacement of the climate signal in ancient ice by premelting and anomalous diffusion. Nature, 411, 568–571. https://doi.org/10.1038/35079043

Rezakazemi, M., Shirazian, S., & Ashrafizadeh, S. N. (2012). Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination, 285, 383–392. https://doi.org/10.1016/j.desal.2011.10.030

Romero, J., Rios, G. M., Sanchez, J., Bocquet, S., & Savedra, A. (2003). Modeling heat and mass transfer in osmotic evaporation process. AIChE Journal, 49(2), 300–308. https://doi.org/10.1002/aic.690490203

Saffarionpour, S., & Ottens, M. (2018). Recent advances in techniques for flavor recovery in liquid food processing. Food Engineering Reviews, 10(2), 1–14. https://doi.org/10.1007/s12393-017-9172-8

Samsuri, S., Amran, N. A., Yahya, N., & Jusoh, M. (2016). Review on progressive freeze concentration designs. Chemical Engineering Communications, 203(3), 345–363. https://doi.org/10.1080/00986445.2014.999050

Samsuri, S., Rizan, N. A. N., Hung, S. H., Amran, N. A., & Sambudi, N. S. (2019). Progressive freeze concentration for volume reduction of produced water and biodiesel wastewater. Chemical Engineering and Technology, 42(9), 1–13. https://doi.org/10.1002/ceat.201800505

Sánchez, J., Hernández, E., Auleda, J. M., & Raventós, M. (2011). Review: freeze concentration technology applied to dairy products. Food Science and Technology International, 17(1), 5–13. https://doi.org/10.1177/1082013210382479

Sánchez, J., Ruiz, Y., Auleda, J. M., Hernández, E., & Raventós, M. (2009). Review. Freeze concentration in the fruit juices industry. Food Science and Technology International, 15(4), 303–315. https://doi.org/10.1177/1082013209344267

Snow, D. R., Ward, R. E., Olsen, A., Jimenez-Flores, R., & Hintze, K. J. (2011). Membrane-rich milk fat diet provides protection against gastrointestinal leakiness in mice treated with lipopolysaccharide. Journal of Dairy Science, 94(5), 2201–2212. https://doi.org/10.3168/jds.2010-3886

Spitsberg, V. L. (2005). Invited review: Bovine milk fat globule membrane as a potential nutraceutical. Journal of Dairy Science, 88(7), 2289–2294. https://doi.org/10.3168/jds.S0022-0302(05)72906-4

Tamime, A. Y., & Robinson, R. K. (2007). Tamime and Robinson’s Yoghurt: Science and technology (3rd ed.) Woodhead Publishing Series in Food Science, Technology and Nutrition.

Toledo, R. T. (2007). Evaporation. In R. T. Toledo (Ed.). Fundamentals of Food Process Engineering. Food Science Text Series (pp. 413–429). Springer,Boston, MA. https://doi.org/doi.org/10.1007/0-387-29241-1_11

Toribio, J. L., & Lozano, J. E. (1986). Heat induced browning of clarified apple juice at high temperatures. Journal of Food Science, 51(1), 172–175. https://doi.org/10.1111/j.1365- 2621.1986.tb10863.x

Uald Lamkaddam, I., Vega, E., Colón, J., Ponsá, S., Llenas, L., & Mora, M. (2023). Progressive freeze concentration of cheese whey for protein and lactose recovery. International Dairy Journal, 139, 105572. https://doi.org/https://doi.org/10.1016/j.idairyj.2022.105572

Vaillant, F., Cisse, M., Chaverri, M., Perez, A., Dornier, M., Viquez, F., & Dhuique-Mayer, C. (2005). Clarification and concentration of melon juice using membrane processes. Innovative Food Science and Emerging Technologies, 6(2), 213–220. https://doi.org/10.1016/j.ifset.2004.11.004

Vuist, J. E., Boom, R. M., & Schutyser, M. A. I. (2021). Solute inclusion and freezing rate during progressive freeze concentration of sucrose and maltodextrin solutions. Drying Technology, 39(10), 1285–1293. https://doi.org/10.1080/07373937.2020.1742151

Yahya, N., Ismail, N., Zakaria, Z. Y., Ngadi, N., Rahman, R. A., & Jusoh, M. (2017a). The effect of coolant temperature and stirrer speed for concentration of sugarcane via progressive freeze concentration process. Chemical Engineering Transactions, 56, 1147–1152. https://doi.org/10.3303/CET1756192

Yahya, N., Jie, L. W., Zakaria, Z. Y., Ngadi, N., Mohamad, Z., Rahman, R. A., & Jusoh, M. (2017b). Water purification of lake water using progressive freeze concentration method. Chemical Engineering Transactions, 56, 43–48. https://doi.org/10.3303/CET1756008

Yahya, N., Zakaria, Z. Y., Ali, N., & Jusoh, M. (2015). Effect of coolant temperature on progressive freeze concentration of refined, bleached and deodorised palm oil based on process efficiency and heat transfer. Jurnal Teknologi, 74(7), 19–24. https://doi.org/10.11113/jt.v74.4690

Yongjae, L. (2015). Membrane & other separation technologies and their application to food technology. International Conference and Expo on Separation Techniques., 6(4), 39. https://doi.org/10.4172/2157-7064.S1.010

Yorgun, M. S., Balcioglu, I. A., & Saygin, O. (2008). Performance comparison of ultrafiltration, nanofiltration and reverse osmosis on whey treatment. Desalination, 229(1–3), 204–216. https://doi.org/10.1016/j.desal.2007.09.008

Zhang, Q., Sun, X., Sheng, Q., Chen, J., Huang, W., & Zhan, J. (2016). Effect of suspension freeze-concentration technology on the quality of wine. South African Journal of Enology and Viticulture, 37(1), 39–46. https://doi.org/10.21548/37-1-757

Published

2024-06-23

How to Cite

Abu Bakar, N. A. F. ., & Ab Hamid, F. H. . (2024). Separation methods in the food industry: An exploration of reverse osmosis, evaporation and freeze concentration applications. Malaysian Journal of Chemical Engineering &Amp; Technology, 6(2). https://doi.org/10.24191/mjcet.v6i2.17787