Significant impact of melt-blend and hot-press technique operating condition on polyethylene/thermoplastic starch/aloe vera gel film properties
DOI:
https://doi.org/10.24191/mjcet.v6i2.24504Keywords:
Melt-blending, Hot-press, Thermoplastic starch, Polyethylene, Polymer blendAbstract
Melt-blend and hot-press techniques were among the most popular methods for producing polyethylene/thermoplastic starch (PE/TPS) polymer blends. However, different operating conditions contributed to the various quality of film made. Thus, this paper focuses on determining the most suitable operating conditions involving melt-blend and hot-press techniques on specific PE/TPS/aloe vera gel (AV) film formulations. Thus, this study determines the best operating condition for producing PE/TPS/AV blend. One-factor-at-a-time (OFAT) method was implemented under six operating conditions: different melt-blending temperatures, pre-heating, hot-pressing pressure, temperature and duration, and cooling application. The result demonstrated that the best melt-blending temperature was 170 °C, having the highest tensile strength (TS) performance. Pre-heating application reduced the thickness, which is suitable for applying single-used plastic and more economical than thicker film. Importantly, this study found the lowest pressure to obtain a smooth surface of film without stickiness during the peeling process from the steel plate after applying the hot-press technique. The same condition faced at 130 °C, hot-pressing temperature produced a smooth and clear film structure. The pro-longed hot-pressing duration reduced the bonding strength of the polymer matrix. Finally, a fast-cooling rate enhances the TS of the film. Therefore, the melt-blending and hot-pressing operating conditions significantly impact the physical and mechanical properties of PE/TPS/AV film. The results of this study are valuable for understanding that each formulation needs a specific processing condition essential as an initial assumption in simulation processes.
References
Abd. Karim, S. F., Jai, J., Ku Hamid, K. H., Mior Muzamin, M. H., Kamarrudin, N., & Abdul Aziz, R. A. (2021). Full factorial design analysis and characterization of polyethylene, starch and aloe vera gel thin film formulation. International Journal on Advanced Science, Engineering and Information Technology, 11(6), 2139–2147. https://doi.org/10.18517/ijaseit.11.6.15343
Ahmadi, M., Behzad, T., Bagheri, R., & Heidarian, P. (2018). Effect of cellulose nanofibers and acetylated cellulose nanofibers on the properties of low-density polyethylene/thermoplastic starch blends. Polymer International, 67(8), 993–1002. https://doi.org/10.1002/pi.5592
Al-Salem, S. M., Sultan, H. H., Karam, H. J., & Al-Dhafeeri, A. T. (2019). Determination of biodegradation rate of commercial oxo-biodegradable polyethylene film products using ASTM D 5988. Journal of Polymer Research, 26(157), 1–7. https://doi.org/10.1007/s10965-019-1822-5
Amigo, N., Palza, H., Canales, D., Sepúlveda, F., Vasco, D. A., Francisco, S., & Zapata, P. A. (2019). Effect of starch nanoparticles on the crystallization kinetics and photodegradation of high density polyethylene. Composites Part B, 174, 1069–1079. https://doi.org/10.1016/j.compositesb.2019.106979
Bagheri, R., Naimian, F., & Sheikh, N. (1997). Radiation grafting of acrylamide onto starch-filled low density polyethylene. Radiation Physics and Chemistry, 49(4), 497–501. https://doi.org/10.1016/S0969-806X(96)00150-8
Bhopatkar, J., Ikhar, A., Chandak, M., Mankar, N., & Sedani, S. (2022). Composite pre-heating: A Novel approach in restorative dentistry. Cureus, 14(7), 8–15. https://doi.org/10.7759/cureus.27151
Chin, S. S., Lyn, F. H., & Hanani, Z. A. N. (2017). Effect of Aloe vera (Aloe barbadensis Miller) gel on the physical and functional properties of fish gelatin films as active packaging. Food Packaging and Shelf Life, 12, 128–134. https://doi.org/10.1016/j.fpsl.2017.04.008
Datta, D., & Halder, G. (2018). Enhancing degradability of plastic waste by dispersing starch into low density polyethylene matrix. Process Safety and Environmental Protection, 114, 143–152. https://doi.org/10.1016/j.psep.2017.12.017
Datta, D., & Halder, G. (2019). Effect of media on degradability, physico-mechanical and optical properties of synthesized polyolefinic and PLA film in comparison with casted potato/corn starch biofilm. Process Safety and Environmental Protection, 124, 39–62. https://doi.org/10.1016/j.psep.2019.02.002
Dionysopoulos, D., Tolidis, K., Gerasimou, P., & Koliniotou-Koumpia, E. (2014). Effect of preheating on the film thickness of contemporary composite restorative materials. Journal of Dental Sciences, 9(4), 313–319. https://doi.org/10.1016/j.jds.2014.03.006
Gutiérrez, T. J., & Álvarez, K. (2016). Physico-chemical properties and in vitro digestibility of edible films made from plantain flour with added Aloe vera gel. Journal of Functional Foods, 26, 750–762. https://doi.org/10.1016/j.jff.2016.08.054
Herlambang, B., & Anando, M. R. O. B. (2020). Effect of film fabricating conditions and its implications on mechanical properties of high-density polyethylene film. IOP Conference Series: Materials Science and Engineering, 902, 012030. https://doi.org/10.1088/1757-899X/902/1/012030
Ibrahim, M. M., Moustafa, H., El Rahman, E. N. A., Mehanny, S., Hemida, M. H., & El-Kashif, E. (2020). Reinforcement of starch based biodegradable composite using Nile rose residues. Journal of Materials Research and Technology, 9(3), 6160–6171. https://doi.org/10.1016/j.jmrt.2020.04.018
Jantanasakulwong, K., Wongsuriyasak, S., Rachtanapun, P., Seesuriyachan, P., Chaiyaso, T., Leksawasdi, N., & Techapun, C. (2018). Mechanical properties improvement of thermoplastic corn starch and polyethylene-grafted-maleicanhydride blending by Na+ ions neutralization of carboxymethyl cellulose. International Journal of Biological Macromolecules, 120, 297–301. https://doi.org/10.1016/j.ijbiomac.2018.08.076
Kanatt, S. R., & Makwana, S. H. (2020). Development of active, water-resistant carboxymethyl cellulose-poly vinyl alcohol-Aloe vera packaging film. Carbohydrate Polymers, 227, 115303. https://doi.org/10.1016/j.carbpol.2019.115303
Mallick, N., Soni, A. B., & Pal, D. (2020). Improving the mechanical, water vapor permeability, antimicrobial properties of corn-starch/poly vinyl alcoholfilm (PVA): effect of rice husk fiber (RH) & alovera gel (AV). IOP Conference Series: Materials Science and Engineering, 798, 012002. https://doi.org/10.1088/1757-899X/798/1/012002
Martins, A. B., Cattelan, A. K., & Santana, R. M. C. (2018). How the compatibility between polyethylene and thermoplastic starch can be improved by adding organic acids? Polymer Bulletin, 75, 2197–2212. https://doi.org/10.1007/s00289-017-2147-3
Mehmood, C. T., Qazi, I. A., Hashmi, I., Bhargava, S., & Deepa, S. (2016). Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii. International Biodeterioration and Biodegradation, 113, 276–286. https://doi.org/10.1016/j.ibiod.2016.01.025
Min Min, A., Chuah, T. G., & Chantara, T. R. (2008). Thermal and dynamic mechanical analysis of polyethylene modified with crude palm oil. Materials and Design, 29, 992–999. https://doi.org/10.1016/j.matdes.2007.03.023
Nguyen, D. M., Vu, T. T., Grillet, A.-C., Thuc, H. H., & Thuc, C. N. H. (2016a). Effect of organoclay on morphology and properties of linear low density polyethylene and Vietnamese cassava starch biobased blend. Carbohydrate Polymers, 136, 163–170. https://doi.org/10.1016/j.carbpol.2015.09.020
Nguyen, D. M., Do, T. V. V., Grillet, A.-C., Thuc, H. H., & Thuc, C. N. H. (2016b). Biodegradability of polymer film based on low density polyethylene and cassava starch. International Biodeterioration & Biodegradation, 115, 257–265. https://doi.org/10.1016/j.ibiod.2016.09.004
Panrong, T., Karbowiak, T., & Harnkarnsujarit, N. (2020). Effects of acetylated and octenyl-succinated starch on properties and release of green tea compounded starch/LLDPE blend films. Journal of Food Engineering, 284, 110057. https://doi.org/10.1016/j.jfoodeng.2020.110057
Patti, A., Acierno, D., Latteri, A., Tosto, C., Pergolizzi, E., Recca, G., Cristaudo, M., & Cicala, G. (2020). Influence of the processing conditions on the mechanical performance of sustainable bio-based PLA compounds. Polymers, 12(2197), 1–20. https://doi.org/10.3390/POLYM12102197
Raghavan, D., & Emekalam, A. (2001). Characterization of starch/polyethylene and starch/polyethylene/poly(lactic acid) composites. Polymer Degradation and Stability, 72, 509–517. https://doi.org/10.1016/S0141-3910(01)00054-4
Raman, P. P., & Jinwoong, S. (2011). Compounding and processing of plastic/rubber blends. In A. I. Isayev (Ed.), Encyclopedia of Polymer Blends (pp. 109–161). Wiley-VCH. https://doi.org//10.1002/9783527805242.ch3
Rokbi, M., Khaldoune, A., Sanjay, M. R., Senthamaraikannan, P., Ati, A., & Siengchin, S. (2020). Effect of processing parameters on tensile properties of recycled polypropylene based composites reinforced with jute fabrics. International Journal of Lightweight Materials and Manufacture, 3(2), 144–149. https://doi.org/10.1016/j.ijlmm.2019.09.005
Sabetzadeh, M., Bagheri, R., & Masoomi, M. (2017). Morphology and rheological properties of compatibilized low-density polyethylene/linear low-density polyethylene/thermoplastic starch blends. Journal of Applied Polymer Science, 134(16), 44719. https://doi.org/10.1002/app.44719
Saddem, M., Koubaa, A., Bouafif, H., Migneault, S., & Riedl, B. (2019). Effect of fiber and polymer variability on the rheological properties of wood polymer composites during processing. Polymer Composites, 40, E609–E616. https://doi.org/10.1002/pc.24909
Sarifuddin, N., Ismail, H., & Ahmad, Z. (2014). Incorporation of kenaf core fibers into low density polyethylene/thermoplastic sago starch blends exposed to natural weathering. Molecular Crystals and Liquid Crystals, 603, 180–193. https://doi.org/10.1080/15421406.2014.976516
Tamada, M., Seko, N., & Yoshii, F. (2004). Application of radiation-graft material for metal adsorbent and crosslinked natural polymer for healthcare product. Radiation Physics and Chemistry, 71, 221–225. https://doi.org/10.1016/j.radphyschem.2004.03.044
Tharazi, I., Sulong, A. B., Muhamad, N., Haron, C. H. C., Tholibon, D., Ismail, N. F., Radzi, M. K. F. M., & Razak, Z. (2017). Optimization of hot press parameters on tensile strength for unidirectional long kenaf fiber reinforced polylactic-acid composite. Procedia Engineering, 184, 478–485. https://doi.org/10.1016/j.proeng.2017.04.150
Tomaszewska, J., Sterzyński, T., & Zajchowski, S. (2011). Thermal and structural effects of poly(vinyl chloride)/(wood flour) compound gelation in the Brabender mixer. Journal of Vinyl and Additive Technology, 17(4), 239–244. https://doi.org/10.1002/vnl.20286
Wang, X., Zhang, Y., Zhu, Y., Lv, S., Ni, H., Deng, Y., & Yuan, Y. (2022). Effect of different hot-pressing pressure and temperature on the performance of titanium mesh-based MEA for DMFC. Membranes, 12(431), 1–25. https://doi.org/10.3390/membranes12040431
Wei, Q., Wu, Z., Wei, W., Aladejana, J. T., Yves, K. G., Li, D., Hu, X., Wang, X., & Xie, Y. (2021). Optimization of hot-press parameters for plywood with environmental aluminophosphate adhesive. BioResources, 16(1), 1702–1712. https://doi.org/10.15376/biores.16.1.1702-1712
Zakaria, N. H., Muhammad, N., Sandu, A. V., & Abdullah, M. M. A. B. (2018). Effect of mixing temperature on characteristics of thermoplastic potato starch film. IOP Conference Series: Materials Science and Engineering, 374(1), 012083. https://doi.org/10.1088/1757-899X/374/1/012083
Zou, H., Li, X., Zhang, Y., Wang, Z., Zhuo, B., Ti, P., & Yuan, Q. (2021). Effects of different hot pressing processes and NFC/GO/CNT composite proportions on the performance of conductive membranes. Materials and Design, 198, 109334. https://doi.org/10.1016/j.matdes.2020.109334
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.