Effect of various dopants on titanium dioxide nanorod arrays: A review
DOI:
https://doi.org/10.24191/mjcet.v6i2.21827Keywords:
Titanium dioxide, TiO2, Nanorod, Metal oxide, NanomaterialsAbstract
In recent years, titanium dioxide (TiO2) has emerged as one of the most exceptional nanomaterials, attracting interest from experts throughout the globe. In addition to having a band gap of 3.2 eV, TiO2 has outstanding optical, structural, electrical, and photocatalytic capabilities that may be used in the semiconductor industry. However, because of its weak conductivity and capacitance, TiO2 has not been able to reach its full potential. In order to realise its full potential, researchers have devised a variety of methods, including hydrothermal deposition, sol-gel-assisted template deposition, chemical vapor deposition, electrochemical anodisation, hydrothermal deposition, and metal oxide doping. Doping TiO2 with metal oxides has been shown to significantly enhance its properties, which may improve its qualities. The primary goal of this study is to provide an overview of various research studies on the influence of the metal oxide dopant on the final properties of titanium dioxide (TiO2) nanorod arrays.
References
Carotta, M.C., Ferroni, M., Gnani, D., Guidi, V., Merli, M., Martinelli, G., Casale, M.C., Notaro, M. (1999). Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring. Sensors and Actuators, B: Chemical, 58(1–3), 310–317. https://doi.org/10.1016/S0925-4005(99)00148-3
Chen, K., Zhang, H., Tong, H., Wang, L., Tao, L., Wang, K., Zhang, Y., & Zhou, X. (2021). Down-conversion Ce-doped TiO2 nanorod arrays and commercial available carbon-based perovskite solar cells: Improved performance and UV photostability. International Journal of Hydrogen Energy, 46(7), 5677–5688. https://doi.org/10.1016/j.ijhydene.2020.11.074
Ikizler, B., & Peker, S. M. (2016). Synthesis of TiO2 coated ZnO nanorod arrays and their stability in photocatalytic flow reactors. Thin Solid Films, 605, 232–242. https://doi.org/10.1016/j.tsf.2015.11.083
Javed, H.M.A., Adnan, M., Qureshi, A.A., Javed, S., Adeel, M., Akram, M.A., Shahid, M., Ahmad, M.I., Afzaal, M., Abd-Rabboh, H.S.M., Arif, M. (2022). Morphological, structural, thermal, and optical properties of Zn/Mg-doped TiO2 nanostructures for optoelectronic applications. Optics & Laser Technology, 146, 107566. https://doi.org/10.1016/j.optlastec.2021.107566.
Katta, V. S., Das, A., Dileep K., R., Cilaveni, G., Pulipaka, S., Veerappan, G., Ramasamy, E., Meduri, P., Asthana, S., Melepurath, D., & Raavi, S. S. K. (2021). Vacancies induced enhancement in neodymium doped titania photoanodes based sensitized solar cells and photo-electrochemical cells. Solar Energy Materials and Solar Cells, 220, 110843. https://doi.org/10.1016/j.solmat.2020.110843
Khanna, S., Utsav, Patel, R., Marathey, P., Chaudari, R., Vora, J., Banerjee, R., Ray, A., & Mukhopadhyay, I. (2019). Growth of titanium dioxide nanorod over shape memory material using chemical vapor deposition for energy conversion application. Materials Today: Proceedings, 28, 475–479. https://doi.org/10.1016/j.matpr.2019.10.035
Komaraiah, D., Radha, E., Sivakumar, J., Ramana Reddy, M. V., & Sayanna, R. (2020). Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films. Optical Materials, 108, 110401. https://doi.org/10.1016/j.optmat.2020.110401
Komaraiah, D., Radha, E., Sivakumar, J., Ramana Reddy, M.V., Sayanna, R. (2019). Structural, optical properties and photocatalytic activity of Fe3+ doped TiO2 thin films deposited by sol-gel spin coating Author links open overlay panel. Surfaces and Interfaces, 17, 100368. https://doi.org/10.1016/j.surfin.2019.100368
Kusior, A., Banas, J., Trenczek-Zajac, A., Zubrzycka, P., Micek-Ilnicka, A., & Radecka, M. (2018). Structural properties of TiO2 nanomaterials. Journal of Molecular Structure, 1157, 327–336. https://doi.org/10.1016/j.molstruc.2017.12.064
Li, W., Yang, J., Zhang, J., Gao, S., Luo, Y., & Liu, M. (2014). Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping. Materials Research Bulletin, 57, 177–183. https://doi.org/10.1016/j.materresbull.2014.05.034
Lv, Y., Li, Y., Sun, H., Guo, Y., Li, Y., Tan, J., & Zhou, X. (2018). Yttrium-doped TiO2 nanorod arrays and application in perovskite solar cells for enhanced photocurrent density. Thin Solid Films, 651, 117–123. https://doi.org/10.1016/j.tsf.2018.02.022
Lv, Y., Tong, H., Cai, W., Zhang, Z., Chen, H., & Zhou, X. (2021). Boosting the efficiency of commercial available carbon-based perovskite solar cells using Zinc-doped TiO2 nanorod arrays as electron transport layer. Journal of Alloys and Compounds, 851, 156785. https://doi.org/10.1016/j.jallcom.2020.156785
Mokhtar, S. M., Ahmad, M. K., Soon, C. F., Nafarizal, N., Faridah, A. B., Suriani, A. B., Mamat, M. H., Shimomura, M., & Murakami, K. (2018). Fabrication and characterization of rutile-phased titanium dioxide (TiO2) nanorods array with various reaction times using one step hydrothermal method. Optik, 154, 510–515. https://doi.org/10.1016/j.ijleo.2017.10.091
Mugundan, S., Praveen, P., Sridhar, S., Prabu, S., Lawrence Mary K., Ubaidullah, M., Shaikh, S. F., Kanagesan, S. (2022). Sol-gel synthesized barium doped TiO2 nanoparticles for solar photocatalytic application. Inorganic Chemistry Communications, 139, 109340. https://doi.org/10.1016/j.inoche.2022.109340
Rajamanickam, N., & Ramachandran, K. (2020). Improved photovoltaic performance in nano TiO2 based dye sensitized solar cells: Effect of TiCl4 treatment and Sr doping. Journal of Colloid and Interface Science, 580, 407–418. https://doi.org/10.1016/j.jcis.2020.07.041
Salamanca-Buentello, F., Persad, D. L., Court, E. B., Martin, D. K., Daar, A. S., & Singer, P. A. (2005). Nanotechnology and the developing world. PLoS Medicine, 2(5), 0383–0386. https://doi.org/10.1371/journal.pmed.0020097
Shanthi, J., Aishwarya, S., & Swathi, R. (2020). Enhanced optical & structural properties by potassium iodide doping on spin coated TiO2 thin films. Chemical Data Collections, 29, 100494. https://doi.org/10.1016/j.cdc.2020.100494
Sharma, M., & Nihal. (2020). Effect of N-doped graphene on optical, electrical, and electrochemical properties of hydrothermally synthesized TiO2 nanocomposite. Materials Today: Proceedings, 26, 3390–3396. https://doi.org/10.1016/j.matpr.2019.11.022
Su, X., He, Q., Yang, Y. e., Cheng, G., Dang, D., & Yu, L. (2021). Free-standing nitrogen-doped TiO2 nanorod arrays with enhanced capacitive capability for supercapacitors. Diamond and Related Materials, 114(October 2020), 108168. https://doi.org/10.1016/j.diamond.2020.108168
Yang, M., Ding, B., & Lee, J. K. (2014). Surface electrochemical properties of niobium-doped titanium dioxide nanorods and their effect on carrier collection efficiency of dye sensitized solar cells. Journal of Power Sources, 245, 301–307. https://doi.org/10.1016/j.jpowsour.2013.06.016
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.