Carbon nanotubes for bone tissue osseointegration engineering: A review

Authors

  • Saiful Amri School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
  • Ammar Mohd Akhir School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
  • Norhasyimi Rahmat School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia and UiTM Green Centre, Universiti Teknologi MARA, Selangor, Malaysia

DOI:

https://doi.org/10.24191/mjcet.v5i2.13324

Keywords:

Carbon nanotubes, Bone tissue engineering, Hydroxyapatite, Chitosan, Polycaprolactone

Abstract

In bone tissue engineering, latest advancements have drastically improved the process of surgical healing by carbon nanotubes that have grown as biocompatible products to address bone damage or deficiencies. The latest reconstructive solutions related to the bone tissue engineering industry have several benefits, but still, some inconveniences continue to emerge. The integration of carbon nanotubes as a replacement medium for implantable bone tissue enhances dramatically the mechanical properties of different biomaterials to scaffold the damaged region, which imitates natural bone. Carbon nanotubes and bio-matters have been improved recently for bone tissue applications. This review aims to analyse the utilisation of carbon nanotubes as bio-composite in bone tissue by comparing the biophysical and chemical properties of carbon nanostructures and discussing the functionality in bone tissue regeneration and how it can be utilised in the future in Malaysia.

References

Ahadian, S., Obregón, R., Ramón-Azcón, J., Salazar, G., Shiku, H., Ramalingam, M., & Matsue, T. (2016). Carbon nanotubes and graphene-based nanomaterials for stem cell differentiation and tissue regeneration. Journal of Nanoscience and Nanotechnology, 16(9), 8862–8880. https://doi.org/10.1166/jnn.2016.12729

Allaedini, G., Aminayi, P., & Tasirin, S. M. (2016). Methane decomposition for carbon nanotube production: Optimization of the reaction parameters using response surface methodology. Chemical Engineering Research and Design, 112, 163–174.

Baht, G. S., Vi, L., & Alman, B. A. (2018). The role of the immune cells in fracture healing. Current Osteoporosis Report, 16(2), 138–145. https://doi.org/10.1007/s11914-018-0423-2

Bakhsheshi‐Rad, H. R., Chen, X., Ismail, A. F., Aziz, M., Abdolahi, E., & Mahmoodiyan, F. (2019). Improved antibacterial properties of an Mg‐Zn‐Ca alloy coated with chitosan nanofibers incorporating silver sulfadiazine multiwall carbon nanotubes for bone implants. Polymers for Advanced Technologies, 30(5), 1333–1339. https://doi.org/10.1002/pat.4563

Barrère, F., Blitterswijk, C. A. v., & Groot, K. d. (2006). Bone regeneration-molecular and cellular interactions with calcium phosphate ceramics. International Journal of Medicine, 3, 317–332.

Berry, M. F., Engler, A. J., Woo, Y. J., Pirolli, T. J., Bish, L. T., Jayasankar, V., Morine, K. J., Gardner, T. J., Discher, D. E., &

Sweeney, H. L. (2006). Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. American Journal of Physiology-Heart and Circulatory Physiology, 290(6), H2196–2203. https://doi.org/10.1152/ajpheart.01017.2005

Chen, P., Xie, F., Tang, F., & McNally, T. (2021). Cooperative effects of cellulose nanocrystals and sepiolite when combined on ionic liquid plasticised chitosan materials. Polymers (Basel), 13(4). https://doi.org/10.3390/polym13040571

Franco, J., Hunger, P., Launey, M. E., Tomsia, A. P., & Saiz, E. (2010). Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomaterialia, 6(1), 218–228. https://doi.org/10.1016/j.actbio.2009.06.031

Gupta, K. C., & Ravi Kumar, M. N. V. (2000). An overview on chitin and chitosan applications with an emphasis on controlled drug release formulations. Journal of Macromolecular Science, 40(4), 273–308. https://doi.org/10.1081/MC-100102399

Huang, B. (2020). Carbon nanotubes and their polymeric composites: the applications in tissue engineering. Biomanufacturing Reviews, 5(1). https://doi.org/10.1007/s40898-020-00009-x

Huang, N. J., Zhang, L., Tang, W., Chen, C., Yang, C. S., & Kornbluth, S. (2012). The Trim39 ubiquitin ligase inhibits APC/CCdh1-mediated degradation of the Bax activator MOAP-1. Journal of Cell Biology, 197(3), 361–367. https://doi.org/10.1083/jcb.201108062

Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543.

Ji, W., Sun, Y., Yang, F., van den Beucken, J. J., Fan, M., Chen, Z., & Jansen, J. A. (2011). Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharmaceutical Research, 28(6), 1259–1272. https://doi.org/10.1007/s11095-010-0320-6

Kim, D.-H., Paolo P. Provenzano, P. P., Chris L. Smith, C. L., & Levchenko, A. (2012). Matrix nanotopography as a regulator of cell function. Journal of Cell Biology, 197(3), 351–360. https://doi.org/10.1083/jcb.201108062

Lakhkar, N. J., Lee, I. H., Kim, H. W., Salih, V., Wall, I. B., & Knowles, J. C. (2013). Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Advanced Drug Delivery Reviews, 65(4), 405–420. https://doi.org/10.1016/j.addr.2012.05.015

Lekshmi, G., Sana, S. S., Nguyen, V. H., Nguyen, T. H. C., Nguyen, C. C., Le, Q. V., & Peng, W. (2020). Recent progress in carbon nanotube polymer composites in tissue engineering and regeneration. International Journal of Molecular Sciences, 21(17). https://doi.org/10.3390/ijms21176440

Li, J. J., Roohani-Esfahani, S. I., Dunstan, C. R., Quach, T., Steck, R., Saifzadeh, S., Pivonka, P., & Zreiqat, H. (2016). Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiae. Biomedical Materials, 11(1), 015016. https://doi.org/10.1088/1748-6041/11/1/015016

Li, X., Liu, H., Niu, X., Yu, B., Fan, Y., Feng, Q., Cui, F. Z., & Watari, F. (2012). The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials, 33(19), 4818–4827. https://doi.org/10.1016/j.biomaterials.2012.03.045

Marsell, R., & Einhorn, T. A. (2011). The biology of fracture healing. Injury, 42(6), 551–555. https://doi.org/10.1016/j.injury.2011.03.031

McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Developmental Cell, 6, 483–493.

Mikael, P. E., Wallace, J. A., & Nukavarapu, S. P. (2012). Nanotubes for tissue engineering. In Webster, T. J. (Ed.) Nanomedicine: Technologies and Applications (pp. 460–489). Woodhead Publishing. https://doi.org/10.1533/9780857096449.3.460

Murphy, W. L., McDevitt, T. C., & Engler, A. J. (2014). Materials as stem cell regulators. Nature Materials, 13(6), 547–557. https://doi.org/10.1038/nmat3937

Nudelman, F., Pieterse, K., George, A., Bomans, P. H., Friedrich, H., Brylka, L. J., Hilbers, P. A., de With, G., & Sommerdijk, N. A. (2010). The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nature Materials, 9(12), 1004–1009. https://doi.org/10.1038/nmat2875

Osmani, R. M., Kulkarni, A. S., Aloorkar, N. H., Bhosale, R. R., Ghodake, P. P., & Harkare, B. R. (2014). Carbon Nanotubes:An Impending Carter in Therapeutics. International Journal of Pharmaceutical and Clinical Research, 6(1), 84–96.

Pei, B., Wang, W., Dunne, N., & Li, X. (2019). Applications of carbon nanotubes in bone tissue regeneration and engineering: Superiority, concerns, current advancements, and prospects. Nanomaterials (Basel), 9(10). https://doi.org/10.3390/nano9101501

Prins, H. J., Braat, A. K., Gawlitta, D., Dhert, W. J., Egan, D. A., Tijssen-Slump, E., Yuan, H., Coffer, P. J., Rozemuller, H., & Martens, A. C. (2014). In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells. Stem Cell Research, 12(2), 428–440. https://doi.org/10.1016/j.scr.2013.12.001

Ricard-Blum, S., & Ballut, L. (2011). Matricryptins derived from collagens and proteoglycans. Frontiers in Bioscience, 16, 674. https://doi.org/ 10.2741/3712.

Singh, N., Manshian, B., Jenkins, G. J., Griffiths, S. M., Williams, P. M., Maffeis, T. G., Wright, C. J., & Doak, S. H. (2009). NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials, 30(23–24), 3891–3914. https://doi.org/10.1016/j.biomaterials.2009.04.009

Tanaka, M., Aoki, K., Haniu, H., Kamanaka, T., Takizawa, T., Sobajima, A., Yoshida, K., Okamoto, M., Kato, H., & Saito, N. (2020). Applications of carbon nanotubes in bone regenerative medicine. Nanomaterials (Basel), 10(4). https://doi.org/10.3390/nano10040659

Topala, C. N., Schoeber, J. P., Searchfield, L. E., Riccardi, D., Hoenderop, J. G., & Bindels, R. J. (2009). Activation of the Ca2+-sensing receptor stimulates the activity of the epithelial Ca2+ channel TRPV5. Cell Calcium, 45(4), 331–339. https://doi.org/10.1016/j.ceca.2008.12.003

Venkatraman, S. K., & Swamiappan, S. (2020). Review on calcium and magnesium-based silicates for bone tissue engineering applications. Journal of Biomedical Materials Research, 108(7), 1546–1562. https://doi.org/10.1002/jbm.a.36925

Yamada, S., Heymann, D., Bouler, J.-M., & Daculsi, G. (1997). Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials, 18(15), 1037–1041. https://doi.org/10.1016/S0142-9612(97)00036-7

Zernicka-Goetz, M. (2002). Patterning of the embryo- the first spatial decisions in the life of a mouse. Development, 815–829.

Downloads

Published

2022-10-31

How to Cite

Amri, S., Mohd Akhir, A., & Rahmat, N. (2022). Carbon nanotubes for bone tissue osseointegration engineering: A review. Malaysian Journal of Chemical Engineering &Amp; Technology, 5(2), 67–76. https://doi.org/10.24191/mjcet.v5i2.13324