Mechanical and physical properties of highly eggshell-filled Bis-GMA/TEGDMA for dental application
DOI:
https://doi.org/10.24191/mjcet.v5i2.19878Keywords:
Bis-GMA, TEGDMA, Eggshell, Mechanical properties, Physical propertiesAbstract
This study attempts to assess a newly developed eggshell-filled Bisphenol A-glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) for dental application. Amounts of 30 and 40 wt% of eggshell were filled in Bis-GMA/TEGDMA along with 1% of benzoyl peroxide, followed by the fabrication of rectangular specimens of 20 × 25 × 2 mm for evaluation of physical and mechanical properties. Prior to the fabrication of the composites, the morphology of the eggshell was observed using a field emission scanning electron microscope. The surface roughness and hardness of the specimens were assessed using a surface profilometer and Vickers hardness tester, respectively. The eggshells were irregular in shape with sizes ranging between 5 to 60 µm. The roughness values slightly fluctuated with the incorporation of fillers. The roughest surface was recorded by 40 wt% filled Bis-GMA/TEGDMA with 1.34 µm. On the contrary, the hardness of the composites increased by 37 to 73% as compared to the unfilled Bis-GMA/TEGDMA. With improved mechanical performance as well as physical characteristics that could be further enhanced, eggshell-filled Bis-GMA/TEGDMA could be the next potential substitute for sustainable dental materials, subjected to further investigations.
References
Abdullah, A. M., Rahim, T. N. A. T., Hamad, W. F. W., Mohamad, D., Akil, H. M., Rajion, Z. A. (2018). Mechanical and cytotoxicity properties of hybrid ceramics filled polyamide 12 filament feedstock for craniofacial bone reconstruction via fused deposition modelling. Dental Materials, 34(11), e309–e316. https://doi.org/10.1016/j.dental.2018.09.006
Abdullah, A. M., Mohamad, D., Rahim, T. N. A. T., Akil, H. M., Rajion, Z. A. (2019). Enhancement of thermal, mechanical and physical properties of polyamide 12 composites via hybridization of ceramics for bone replacement. Materials Science and Engineering C: Materials for Biological Applications, 6(99), 719–725. https://doi.org/10.1016/j.msec.2019.02.007
Bakhori., S. K. M., Mahmud, S., Ling, C. A., Sirelkhatim,A. H., Hasan, H., Mohamad, D., Masudi, S. M., Seeni, A., Rahman, R. A. (2017). In-vitro efficacy of different morphology of zinc oxide on streptococcus sobrinus and streptococcus mutans. Materials Science and Engineering C: Materials for Biological Applications, 78(1), 868–877. https:// doi.org/10.1016/j.msec.2017.04.085
Beun, S., Bailly, C., Devaux, J., Leloup, G. (2012). Physical, mechanical and rheological characterization of resin-based pit and fissure sealants compared to flowable resin composites. Dental Materials, 28(4), 349–359. https://doi.org/10.1016/j.dental.2011.11.001
Bollen, C. M. L., Lambrechts., Quiynen, M. (1997). Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of literature. Dental Materials, 13(4), 258–269. https://doi.org/10.1016/s0109-5641(97)80038-3
Bowen, R. L. (1963). Properties of a silica-reinforced polymer for dental restorations. The Journal of American Dental Association, 66(1), 57–64. https://doi.org/10.14219/jada.archive.1963.0010
Ching, H. S., Luddin, N., Kannan, T. P, Rahman, I. A., Ghani, N. R. A. (2018). Modification of glass ionomer cement on their physical-mechanical and antimicrobial properties. Journal of Esthetic and Restorative Dentistry, 30(6), 557–571. https://doi.org/10.1111/jerd.12413
Dafar, M. O., Grol, M.W., Canham, P.B., Dixon, S. J., Rizkalla, A. S. (2016) Reinforcement of flowable dental composites with titanium dioxide nanotubes. Dental Materials, 32(6), 817–826. https://doi.org/10.1016/j.dental.2016.03.022
Hussein, A., Mat., A. N. C., Wahab, N. A. A., Rahman, I. A., Husein, A., Ghani, Z. A. (2020). Synthesis and Properties of Novel Calcia-Stabilized Zirconia (Ca-SZ) with Nano Calcium Oxide Derived from Cockle Shells and Commercial Source for Dental Application. Applied Sciences, 10(17), 5751. https://doi.org/10.3390/app10175751
Hojati, S. T., Alaghemand, H., Hamze, F., Babaki, F. A., Nia, R. R., Rezvani, M. B., Kaviani, M., Atai, M. (2013). Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dental Materials, 29(5), 495–505. https://doi.org/10.1016/j.dental.2013.03.011
Janke, V., Neuhoff N. V., Schlegelberger, B., Leyhausen, G., Geurtsen, W. (2003). TEGDMA causes apoptosis in primary human gingival fibroblasts. Journal of Dental Research, 82(10), 814–818. https://doi.org/10.1177/154405910308201010
Kim, K. H., Ong, J. L., Okuno, O. (2002). The effect of filler loading and morphology on the mechanical properties of contemporary composites, Journal of Prosthetic Dentistry, 87(6), 642–649. https://doi: 10.1067/mpr.2002.125179
Ku, R. M., Ko, C. C., Jeong, M. G., Kim, H. I., Kwon, Y. H. (2015). Effect of flowability on the flow rate, polymerization shrinkage, and mass change of flowable composites, Dental materials, 34(2), 168–174. https://doi.org/10.4012/dmj.2014-178
Rohmadi, R., Harwijayanti, W., Ubaidillah, U., Triyono, J., Diharjo, K., Utomo, P. (2021). In vitro degradation and cytotoxicity of eggshell-based hydroxyapatite: A systematic review and meta-analysis. Polymers 13(19), 3223. https://doi: 10.3390/polym13193223
Singh, S., Rajkumar, B., Gupta, Vishesh., Bhatt, A. (2017). Current photo-initiators in dental materials. International Journal of Dental Sciences, 3(1), 17–20.
Volk, J., Leyhausen, G., Dogan, S., Geurtsen, W. (2007) Additive effects of TEGDMA and hydrogen peroxide on the cellular glutathione content of human gingival fibroblasts. Dental Materials, 23(8), 921–926. https://doi.org/10.1016/j.dental.2006.08.001
Yusoff, N.M., Johari, Y., Rahman, I. A., Mohamad, D., Khamis, M. F., Ariffin, Z., Husein, A. (2019). Physical and mechanical properties of flowable composite incorporated with nanohybrid silica synthesised from rice husk. Journal of Materials Research and Technology, 8(3), 2777–2785. https://doi.org/10.1016/j.jmrt.2019.04.014.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.