In vitro antimicrobial activity of citrus waste-infused used cooking oil

Authors

  • Miradatul Najwa Muhd Rodhi Faculty of Chemical Engineering, UiTM Shah Alam
  • Nurul Asyiqin Sa’at School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Harumi Veny School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Fazlena Hamzah School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.24191/mjcet.v5i2.19100

Keywords:

Citrus waste, Used cooking oil, Infused oil, Disinfectant, Antimicrobial activity

Abstract

This study produced a natural disinfectant from used cooking oil (UCO) and citrus waste. Different formulation of citrus waste was infused in UCO and the antibacterial activity was evaluated. The formulation of waste citrus fruit infused UCO was at the ratio of 10%, 25%, and 50% of waste citrus and UCO by weight/volume (w/v) basis. The peels and seeds of orange (Citrus sinensis), lemon (Citrus limon), and key lime (Citrus aurantifolia) were used. The 50% w/v key lime citrus waste-infused UCO best inhibits Escherichia coli (E. coli) growth. The bacterial growth was reduced to 60% and 68% for dried and fresh lime-infused UCO. The presence of flavonoid, monoterpenes, monoterpenoid, sesquiterpene, sesquiterpenoid, alkaloid and aromatic compounds in the citrus waste-infused UCO was detected by UV-Vis and GC-MS. This contributes to legitimising the utilisation of citrus waste as a part of green-based disinfectants, while having the capacity to lessen waste and act as one of the potential materials in producing safer disinfectants.

References

Anticona, M., Blesa, J., Frigola, A., & Esteve, M. J. (2020). High biological value compounds extraction from citruswaste with non-conventional methods. In Foods (Vol. 9, Issue 6). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/foods9060811

Attard, T. M., Watterson, B., Budarin, V. L., Clark, J. H., & Hunt, A. J. (2014). Microwave assisted extraction as an important technology for valorising orange waste. New Journal of Chemistry, 38(6), 2278–2283. https://doi.org/10.1039/c4nj00043a

Awogbemi, O., Onuh, E. I., & Inambao, F. L. (2019). Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. International Journal of Low-Carbon Technologies, 14(3), 417–425. https://doi.org/10.1093/ijlct/ctz038

Baba, J., Mohammed, S. B., Ya’aba, Y., & Umaru, F. I. (2018). Antibacterial Activity of Sweet Orange Citrus sinensis on some Clinical Bacteria Species Isolated from Wounds. J Family Med Community Health, 5(4), 1154.

Chapman, J. S. (2003). Disinfectant resistance mechanisms, cross-resistance, and co-resistance. International Biodeterioration and Biodegradation, 51(4), 271–276. https://doi.org/10.1016/S0964-8305(03)00044-1

Cordenonsi, L. M., Sponchiado, R. M., Campanharo, S. C., Garcia, C. V, & Raffin, R. P. (2017). Study of Flavonoids presente in Pomelo ( Citrus máxima ) by DSC , UV-VIS , IR , 1 H AND 13 C NMR AND MS. 31–37.

Dahmoune, F., Boulekbache, L., Moussi, K., Aoun, O., Spigno, G., & Madani, K. (2013). Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Industrial Crops and Products, 50, 77–87. https://doi.org/10.1016/j.indcrop.2013.07.013

Daud, M. S. M., Ngadiman, N. I., & Suliman, M. S. (2020). The awareness of recycling the used of cooking oil. Journal of Critical Reviews, 7(8), 30–32. https://doi.org/10.31838/jcr.07.08.06

Davis, M. F., Iverson, S. A., Baron, P., Vasse, A., Silbergeld, E. K., Lautenbach, E., & Morris, D. O. (2012). Household transmission of meticillin-resistant Staphylococcus aureus and other staphylococci. In The Lancet Infectious Diseases (Vol. 12, Issue 9, pp. 703–716). https://doi.org/10.1016/S1473-3099(12)70156-1

de Oliveira, J. B., Michels, F. S., Silva de Pádua Melo, E., Nazário, C. E. D., Caires, A. R. L., Gonçalves, D. A., Cardoso, C. A. L., & Aragão do Nascimento, V. (2019). Data on mineral composition, fatty acids, oxidative stability, UV-VIS spectra and fluorescence emission of the Dersani® and Sunflower® oils used as a cicatrizing agent. Data in Brief, 26. https://doi.org/10.1016/j.dib.2019.104427

Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. In Applied Microbiology and Biotechnology (Vol. 85, Issue 6, pp. 1629–1642). https://doi.org/10.1007/s00253-009-2355-3

Dvorak, G., Roth, J., & Amass, S. (2008). Disinfection 101. www.cfsph.iastate.edu

Filipe, H. A. L., Fiuza, S. M., Henriques, C. A., & Antunes, F. E. (2021). Antiviral and antibacterial activity of hand sanitizer and surface disinfectant formulations. In International Journal of Pharmaceutics (Vol. 609). Elsevier B.V. https://doi.org/10.1016/j.ijpharm.2021.121139

Ghafoor, D., Khan, Z., Khan, A., Ualiyeva, D., & Zaman, N. (2021). Excessive use of disinfectants against COVID-19 posing a potential threat to living beings. In Current Research in Toxicology (Vol. 2, pp. 159–168). Elsevier B.V. https://doi.org/10.1016/j.crtox.2021.02.008

Goncalves P, R., Marco H, P., & Valderrama, P. (2014). Thermal edible oil evaluation by UV–Vis spectroscopy and chemometrics.pdf. Food Chemistry, 83–86.

Gutiérrez-Venegas, G., Gómez-Mora, J. A., Meraz-Rodríguez, M. A., Flores-Sánchez, M. A., & Ortiz-Miranda, L. F. (2019). Effect of flavonoids on antimicrobial activity of microorganisms present in dental plaque. Heliyon, 5(12). https://doi.org/10.1016/j.heliyon.2019.e03013

Hajlaoui, H., Arraouadi, S., Aouadi, K., Snoussi, M., Noumi, E., & Kadri, A. (2021). GC-MS Profile, α-glucosidase Inhibition Potential, Antibacterial and Antioxidant Evaluation of Peels Citrus aurantium (L), Essential Oil. Journal of Pharmaceutical Research International, 1580–1591. https://doi.org/10.9734/jpri/2021/v33i60b34781

Javed, S., Javaid, A., Nawaz, S., Saeed, M. K., Mahmood, Z., Siddiqui, S. Z., & Ahmad, R. (2014). Phytochemistry, GC-MS Analysis, Antioxidant and Antimicrobial Potential of Essential Oil From Five Citrus Species. Journal of Agricultural Science, 6(3). https://doi.org/10.5539/jas.v6n3p201

Kaskoos, R. A. (2019). Essential Oil Analysis by GC-MS and Analgesic Activity of Lippia citriodora and Citrus limon. Journal of Essential Oil-Bearing Plants, 22(1), 273–281. https://doi.org/10.1080/0972060X.2019.1603123

Khandare, R. D., Tomke, P. D., & Rathod, V. K. (2021). Kinetic modeling and process intensification of ultrasound-assisted extraction of d-limonene using citrus industry waste. Chemical Engineering and Processing - Process Intensification, 159. https://doi.org/10.1016/j.cep.2020.108181

Lim, S. Y., Mutalib, M. S. A., Khaza’ai, H., & Chang, S. K. (2018). Detection of fresh palm oil adulteration with recycled cooking oil using fatty acid composition and ftir spectral analysis. International Journal of Food Properties, 21(1), 2428–2451. https://doi.org/10.1080/10942912.2018.1522332

Mannu, A., Garroni, S., Porras, J. I., & Mele, A. (2020). Available technologies and materials for waste cooking oil recycling. In Processes (Vol. 8, Issue 3). MDPI AG. https://doi.org/10.3390/PR8030366

Meadow, J. F., Altrichter, A. E., Kembel, S. W., Moriyama, M., O’connor, T. K., Womack, A. M., Brown, G. Z., Green, J. L., & Bohannan, B. J. M. (2014). Bacterial communities on classroom surfaces vary with human contact. https://doi.org/10.6084/m9.figshare.687155

Mohd Rodhi, M. N., Saifuddin, P. N. S., & Veny, H. (2020). Characterisation of used cooking oil (UCO) and orange peels as the medium of insect repellent. Malaysian Journal of Chemical Engineering & Technology Journal Homepage, 3(2), 67–75. https://doi.org/10.24191/mjcet

Muhd Rodhi, M. N., Mohd Zaki, N. A. A., Veny, H., & Hamzah, F. (2022). Antimicrobial Properties of Green Disinfectant from Citrus Waste-Infused Used Cooking Oil Using Conventional Method. Indonesian Journal of Chemistry, 22(1), 272. https://doi.org/10.22146/ijc.69812

Ping Ooi, J., Abu Zarim, N., & Lim, V. (2019). Citrus aurontifolia and Cymbopogan flexuosus against Staphylococcus aureus and Escherichia coli. In Malaysian Journal of Medicine and Health Sciences (Vol. 15, Issue SUPP9).

Pratiwi, R. A., & Nandiyanto, A. B. D. (2022). How to Read and Interpret UV-VIS Spectrophotometric Results in Determining the Structure of Chemical Compounds. Indonesian Journal of Educational Research and Technology, 2(1), 1–20. https://doi.org/10.17509/ijert.v2i1.35171

PRO, E., MO, S., JB, O., & IJ, O. (2019). Comparative study on the antimicrobial effects of essential oils from peels of three citrus fruits. MOJ Biology and Medicine, 4(2), 49–54. https://doi.org/10.15406/mojbm.2019.04.00113

Raspo, M. A., Vignola, M. B., Andreatta, A. E., & Juliani, H. R. (2020). Antioxidant and antimicrobial activities of citrus essential oils from Argentina and the United States. Food Bioscience, 36. https://doi.org/10.1016/j.fbio.2020.100651

Rohloff, J. (2015). Analysis of phenolic and cyclic compounds in plants using derivatization techniques in combination with GC-MS-based metabolite profiling. In Molecules (Vol. 20, Issue 2, pp. 3431–3462). MDPI AG. https://doi.org/10.3390/molecules20023431

Saleem, M., & Saeed, M. T. (2020). Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. Journal of King Saud University - Science, 32(1), 805–810. https://doi.org/10.1016/j.jksus.2019.02.013

Scott, E. (1999). Hygiene issues in the home. www.ifh-homehygiene.org

Scott, E., Duty, S., & Callahan, M. (2008). A pilot study to isolate Staphylococcus aureus and methicillin-resistant S aureus from environmental surfaces in the home. American Journal of Infection Control, 36(6), 458–460. https://doi.org/10.1016/j.ajic.2007.10.012

Scott, E., Duty, S., & McCue, K. (2009). A critical evaluation of methicillin-resistant Staphylococcus aureus and other bacteria of medical interest on commonly touched household surfaces in relation to household demographics. American Journal of Infection Control, 37(6), 447–453. https://doi.org/10.1016/j.ajic.2008.12.001

Sharma, K., Mahato, N., & Lee, Y. R. (2019). Extraction, characterization and biological activity of citrus flavonoids. Reviews in Chemical Engineering, 35(2), 265–284. https://doi.org/10.1515/revce-2017-0027

Sharma, S., Loach, N., Gupta, S., & Mohan, L. (2022). Evaluation of larval toxicity, mode of action and chemical composition of citrus essential oils against Anopheles stephensi and Culex quinquefasciatus. Biocatalysis and Agricultural Biotechnology, 39. https://doi.org/10.1016/j.bcab.2022.102284

Smith, D. C., Forland, S., Bachanos, E., Matejka, M., & Barrett, V. (2001). Qualitative Analysis of Citrus Fruit Extracts by GC/MS: An Undergraduate Experiment. The Chemical Educator, 6(1), 28–31. https://doi.org/10.1007/s00897000450a

Song, Z., Wei, X., Xie, M., Zhao, X., Sun, J., Mao, Y., Wang, X., & Wang, W. (2021). Study on the microwave extraction process and product distribution of essential oils from citrus peel. Chemical Engineering and Processing - Process Intensification, 171. https://doi.org/10.1016/j.cep.2021.108726

Xiong, K., & Chen, Y. (2020). Supercritical carbon dioxide extraction of essential oil from tangerine peel: Experimental optimization and kinetics modelling. Chemical Engineering Research and Design, 164, 412–423. https://doi.org/10.1016/j.cherd.2020.09.032

Yao, X., Zhu, X., Pan, S., Fang, Y., Jiang, F., Phillips, G. O., & Xu, X. (2012). Antimicrobial activity of nobiletin and tangeretin against Pseudomonas. Food Chemistry, 132(4), 1883–1890. https://doi.org/10.1016/j.foodchem.2011.12.021

Downloads

Published

2022-10-31

How to Cite

Muhd Rodhi, M. N., Sa’at, N. A., Veny, H., & Hamzah, F. (2022). In vitro antimicrobial activity of citrus waste-infused used cooking oil. Malaysian Journal of Chemical Engineering &Amp; Technology, 5(2), 107–114. https://doi.org/10.24191/mjcet.v5i2.19100