Statistical optimisation for the formulation of edible bird nest-based instant soup using Response Surface Methodology (RSM)

Authors

  • Mohamad Haziq Aiman Ismail EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Centre for Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Penang, Malaysia
  • Mohamed Syazwan Osman EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Centre for Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Penang, Malaysia
  • Khairunnisa Khairudin School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Mohammad Faizal Zainon EMZI Holding Sdn Bhd, H-2 Persiaran 2/1, Kedah Halal Park, Kedah, Malaysia
  • Abdul Fattah Mohd Eusoff EMZI Holding Sdn Bhd, H-2 Persiaran 2/1, Kedah Halal Park, Kedah, Malaysia
  • Quzaimer Zubli EMZI Holding Sdn Bhd, H-2 Persiaran 2/1, Kedah Halal Park, Kedah, Malaysia

DOI:

https://doi.org/10.24191/mjcet.v5i2.19775

Keywords:

Edible bird nest, Response surface methodology, Antioxidant assay, Extraction, Formulation

Abstract

Scientifically, edible bird nest (EBN) contains protein, carbohydrate, fat, and bioactive compounds that can boost the human immune system, strengthen bones, and improve skin complexion. The inclusion of EBN as the main ingredient in instant soup mix can provide an accomplished nutritional meal with protein, carbohydrates, fat, vitamin etc. The formulation of the main ingredients of EBN-based instant soup is statistically optimised using Response Surface Methodology (RSM) technique, with three main ingredients (i.e., EBN wt%, mushroom powder wt%, and skimmed milk wt%) as input factors meanwhile the antioxidant activity (%) of EBN-instant soup solution as the response. The antioxidant activity (%) is analysed using a standard DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) antioxidant assay. The optimised instant soup mix formulation contains 40 wt% EBN, 20 wt% mushroom powder, and 20 wt% skimmed milk with antioxidant activity of 85.35%. The response fit a linear model with a coefficient of determination (R2, 0.9734) and a standard deviation of 0.2. The model is significant with a p-value of < 0.0001which is below 0.0500. The model has been validated successfully with a maximum error of 5.32%.

References

Ariff, M. A. M., Tukiman, S., Razak, N. A. A., Osman, M. S., & Jaapar, J. (2019). Optimization of supercritical fluid extraction of Mariposa Christia Vespertilionis leaves towards antioxidant using response surface methodology. Journal of Physics: Conference Series, 1349(1). https://doi.org/10.1088/1742-6596/1349/1/012054

Chen, C., Zhang, M., Xu, B., & Chen, J. (2021). Improvement of the Quality of Solid Ingredients of Instant Soups: A Review. Food Reviews International, 00(00), 1–26. https://doi.org/10.1080/87559129.2021.1934000

Chua, K. H., Mohamed, I. N., Mohd Yunus, M. H., Shafinaz Md Nor, N., Kamil, K., Ugusman, A., & Kumar, J. (2021). The Anti-Viral and Anti-Inflammatory Properties of Edible Bird’s Nest in Influenza and Coronavirus Infections: From Pre-Clinical to Potential Clinical Application. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.633292

Chye, S. M., Tai, S. K., Koh, R. Y., & Ng, K. Y. (2017). A Mini Review on Medicinal Effects of Edible Bird’s Nest. Letters in Health and Biological Sciences, 2(2), 1–3. https://doi.org/10.15436/2475-6245.17.016

Darvishmotevalli, M., Zarei, A., Moradnia, M., Noorisepehr, M., & Mohammadi, H. (2019). Optimization of saline wastewater treatment using electrochemical oxidation process: Prediction by RSM method. MethodsX, 6, 1101–1113. https://doi.org/10.1016/j.mex.2019.03.015

Daud, N., Mohamad Yusop, S., Babji, A. S., Lim, S. J., Sarbini, S. R., & Hui Yan, T. (2021). Edible Bird’s Nest: Physicochemical Properties, Production, and Application of Bioactive Extracts and Glycopeptides. Food Reviews International, 37(2), 177–196. https://doi.org/10.1080/87559129.2019.1696359

Demircan, B. (2022). Optimization of Drying Parameters to Maximize Antioxidant Activity , Total Phenolic and Anthocyanin Content of Purple Carrot Puree Powder. 1–13.

Demirel, M., & Kayan, B. (2012). Application of response surface methodology and central composite design for the optimization of textile dye degradation by wet air oxidation. International Journal of Industrial Chemistry, 3(1), 1–10. https://doi.org/10.1186/2228-5547-3-24

Domingues, R. M. A., De Melo, M. M. R., Oliveira, E. L. G., Neto, C. P., Silvestre, A. J. D., & Silva, C. M. (2013). Optimization of the supercritical fluid extraction of triterpenic acids from Eucalyptus globulus bark using experimental design. Journal of Supercritical Fluids, 74, 105–114. https://doi.org/10.1016/j.supflu.2012.12.005

Esfe, M. H., Esfandeh, S., Motallebi, S. M., & Toghraie, D. (2022). A comprehensive study to predict the rheological behavior of different hybrid nano-lubricants: A novel RSM-based analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 646(128886). https://doi.org/10.1016/j.colsurfa.2022.128886

Gan, J. Y., Chang, L. S., Mat Nasir, N. A., Babji, A. S., & Lim, S. J. (2020). Evaluation of physicochemical properties, amino acid profile and bioactivities of edible Bird’s nest hydrolysate as affected by drying methods. In Lwt (Vol. 131). Elsevier Ltd. https://doi.org/10.1016/j.lwt.2020.109777

Gan, S., & Hui, M. E. (2016). Improving Drying Characteristics and Quality Attributes of Edible Bird’s Nest (EBN) Processed under Intermittent IR-UVC Assisted Drying. September, 76–134.

Ghassem, M., Arihara, K., Mohammadi, S., Sani, N. A., & Babji, A. S. (2017). Identification of two novel antioxidant peptides from edible bird’s nest (Aerodramus fuciphagus) protein hydrolysates. Food and Function, 8(5), 2046–2052. https://doi.org/10.1039/c6fo01615d

Haghani, A., Mehrbod, P., Safi, N., Kadir, F. A. in. A., Omar, A. R., & Ideris, A. (2017). Edible bird’s nest modulate intracellular molecular pathways of influenza A virus infected cells. BMC Complementary and Alternative Medicine, 17(1), 1–13. https://doi.org/10.1186/s12906-016-1498-x

Hasanzadeh, R., Mojaver, M., Azdast, T., & Park, C. B. (2021). Polyethylene waste gasification syngas analysis and multi-objective optimization using central composite design for simultaneous minimization of required heat and maximization of exergy efficiency. Energy Conversion and Management, 247(September), 114713. https://doi.org/10.1016/j.enconman.2021.114713

Hasler, C. M. (2002). Functional foods: Benefits, concerns and challenges - A position paper from the American Council on Science and Health. Journal of Nutrition, 132(12), 3772–3781. https://doi.org/10.1093/jn/132.12.3772

Ho, C. W., Lazim, A., Fazry, S., Hussain Zaki, U. K. H., Massa, S., & Lim, S. J. (2020). Alcoholic fermentation of soursop (Annona muricata) juice via an alternative fermentation technique. Journal of the Science of Food and Agriculture, 100(3), 1012–1021. https://doi.org/10.1002/jsfa.10103

Ismail, M., Alsalahi, A., Aljaberi, M. A., Ibrahim, R. M., Bakar, F. A., & Ideris, A. (2021). Efficacy of Edible bird’s nest on cognitive functions in experimental animal models: A systematic review. Nutrients, 13(3). https://doi.org/10.3390/nu13031028

Jabeen, N., Kumar, Gp., Devanna, N., & Manjunath, S. (2021). Development and optimization of wheatgrass-based instant soup mix using response surface methodology. International Journal of Food and Nutritional Sciences, 10(1), 10. https://doi.org/10.4103/ijfans.ijfans_5_21

Jamalluddin, N. H., Tukiran, N. A., Ahmad Fadzillah, N., & Fathi, S. (2019). Overview of edible bird’s nests and their contemporary issues. Food Control, 104(January), 247–255. https://doi.org/10.1016/j.foodcont.2019.04.042

Kang, N., Hails, C. J., & Sigurdsson, J. B. (1991). Nest construction and egg‐laying in Edible‐nest Swiftlets Aerodramus spp. and the implications for harvesting. IBIS, 133(2), 170–177. https://doi.org/10.1111/j.1474-919X.1991.tb04828.x

Karamać, M., Kulczyk, A., & Sulewska, K. (2014). Antioxidant activity of hydrolysates prepared from flaxseed cake proteins using pancreatin. Polish Journal of Food and Nutrition Sciences, 64(4), 227–233. https://doi.org/10.2478/pjfns-2013-0023

Kozarski, M., Klaus, A., Jakovljevic, D., Todorovic, N., Vunduk, J., Petrović, P., Niksic, M., Vrvic, M. M., & Van Griensven, L. (2015). Antioxidants of edible mushrooms. Molecules, 20(10), 19489–19525. https://doi.org/10.3390/molecules201019489

Lee, T. H., Wani, W. A., Lee, C. H., Cheng, K. K., Shreaz, S., Wong, S., Hamdan, N., & Azmi, N. A. (2021). Edible Bird’s Nest: The Functional Values of the Prized Animal-Based Bioproduct From Southeast Asia–A Review. Frontiers in Pharmacology, 12(April), 1–16. https://doi.org/10.3389/fphar.2021.626233

Ling, J. W. A., Chang, L. S., Babji, A. S., & Lim, S. J. (2020). Recovery of value-added glycopeptides from edible bird’s nest (EBN) co-products: enzymatic hydrolysis, physicochemical characteristics and bioactivity. Journal of the Science of Food and Agriculture, 100(13), 4714–4722. https://doi.org/10.1002/jsfa.10530

Marfo, E. K., & Oke, O. L. (1989). Effect of sodium chloride, calcium chloride and sodium hydroxide on Denolix regia protein solubility. Food Chemistry, 31(2), 117–127. https://doi.org/10.1016/0308-8146(89)90022-8

Nasir, N. N. M., Ibrahim, R. M., Bakar, M. Z. A., Mahmud, R., & Razak, N. A. A. (2021). Characterization and extraction influence protein profiling of edible bird’s nest. Foods, 10(10). https://doi.org/10.3390/foods10102248

Noor, H. S. M., Babji, A. S., & Lim, S. J. (2018). Nutritional composition of different grades of edible bird’s nest and its enzymatic hydrolysis. AIP Conference Proceedings, 1940. https://doi.org/10.1063/1.5028003

Nur ’Aliah, Ghassem, M., See Siau Fern, & Salam Babji, A. (2016). Functional bioactive compounds from freshwater fish, edible birdnest, marine seaweed and phytochemical. American Journal of Food and Nutrition, 6(2), 33–38. https://doi.org/10.5251/ajfn.2016.6.2.33.38

Salar, R. K., Purewal, S. S., & Bhatti, M. S. (2016). Optimization of extraction conditions and enhancement of phenolic content and antioxidant activity of pearl millet fermented with Aspergillus awamori MTCC-548. Resource-Efficient Technologies, 2(3), 148–157. https://doi.org/10.1016/j.reffit.2016.08.002

Sánchez, C. (2017). Reactive oxygen species and antioxidant properties from mushrooms. Synthetic and Systems Biotechnology, 2(1), 13–22. https://doi.org/10.1016/j.synbio.2016.12.001

Seow, E. K., Ibrahim, B., Muhammad, S. A., Lee, L. H., & Cheng, L. H. (2016). Differentiation between house and cave edible bird’s nests by chemometric analysis of amino acid composition data. Lwt, 65, 428–435. https://doi.org/10.1016/j.lwt.2015.08.047

Shibamoto, T., Kanazawa, K., Fereidoon, S., & Ho, C.-T. (2008). Functional food and health. ACS Symposium, 19(1), 32–34. https://doi.org/10.1249/FIT.0000000000000087

Tukiran, N. A., Ismail, A., Mustafa, S., & Hamid, M. (2016). Determination of porcine gelatin in edible bird’s nest by competitive indirect ELISA based on anti-peptide polyclonal antibody. Food Control, 59, 561–566. https://doi.org/10.1016/j.foodcont.2015.06.039

Wadikar, D. D., & Premavalli, K. S. (2013). Development of a hot water reconstitutable appetizer soup mix from Coleus aromaticus using response surface methodology. International Food Research Journal, 20(6), 3041–3046.

Wang, P., Zhong, L., Yang, H., Zhu, F., Hou, X., Wu, C., Zhang, R., & Cheng, Y. (2022). Comparative analysis of antioxidant activities between dried and fresh walnut kernels by metabolomic approaches. Lwt, 155, 112875. https://doi.org/10.1016/j.lwt.2021.112875

Yadav, Y. S., Prasad, K., & Kumar, S. (2022). Chemical Science Review and Letters Ingredients Interaction Effect on Development and Characterization of Rice Flour and Moringa Oleifera Leaf Powder Based Instant Soup Mix. Chem Sci Rev Lett, 2022(42). https://doi.org/10.37273/chesci.cs205303438

Zukefli, S. N., Chua, L. S., & Rahmat, Z. (2017). Protein Extraction and Identification by Gel Electrophoresis and Mass Spectrometry from Edible bird’s Nest Samples. Food Analytical Methods, 10(2), 387–398. https://doi.org/10.1007/s12161-016-0590-7

Zulkifli, A. S., Babji, A. S., Lim, S. J., Teh, A. H., Daud, N. M., & Rahman, H. A. (2019). Effect of different hydrolysis time and enzymes on chemical properties, antioxidant and antihyperglycemic activities of edible bird nest hydrolysate. Malaysian Applied Biology, 48(2), 149–156.

Downloads

Published

2022-10-31

How to Cite

Ismail, M. H. A., Osman, M. S., Khairudin, K., Zainon, M. F., Mohd Eusoff, A. F., & Zubli, Q. (2022). Statistical optimisation for the formulation of edible bird nest-based instant soup using Response Surface Methodology (RSM). Malaysian Journal of Chemical Engineering &Amp; Technology, 5(2), 115–122. https://doi.org/10.24191/mjcet.v5i2.19775