Synthesis of carboxymethyl cellulose (CMC) from delignified Dyera Costulata
DOI:
https://doi.org/10.24191/mjcet.v5i2.19773Keywords:
Jelutong biomass, Carboxymethyl cellulose (CMC), Delignified Jelutong, Etherification, Degree of substitution (DS)Abstract
Carboxymethyl cellulose (CMC) was synthesised using Jelutong (Dyera costulata) plantation thinning biomass of 12 years old. The samples were delignified via pulping and bleaching process to remove lignin and hemicelluloses. The pulping process was carried out using 10% sodium hydroxide at various reaction times [1–5 hr] and temperatures (27 °C and 100 °C). The synthesis of CMC was carried out via alkalisation and etherification methods using sodium monochloroacetate. The sodium hydroxide concentration used during alkalisation varied from 30 to 50%. The highest yield of CMC obtained was 165%. The characterisation of CMC obtained includes its morphology structure, degree of substitution (DS), and reaction efficiency (RE). A higher DS value was obtained (0.723) for treated biomass (100 °C) with a higher concentration of sodium hydroxide used (40%) during synthesis. The CMC DS value obtained from this experiment falls within the commercial CMC DS values reported.
References
Ab Rashid, N. S., Mohamad Zainol, M., & Saidina Amin N. A. (2021). Synthesis and characterization of carboxymethyl cellulose derived from empty fruit bunch. Sains Malaysiana, 50(9), 2523–2535.
Ahemen, I,. Meludu, O., & Odoh, E. (2013). Effect of sodium carboxymethyl cellulose concentration on the photophysical properties of zinc sulfide nanoparticles. British Journal of Applied Science & Technology 3(4), 1228–1245. https://doi.org/ 10.9734/BJAST/2014/3803
Ahmed, A.A.Y., & Taiseer, H. M. (2018). Synthesis and characteristics of carboxymethyl cellulose from baobab (Adansonia digitata L.) fruit shell. International Journal of Engineering and Applied Science, 5(12), 10. https://dx.doi.org/10.31873/IJEAS.5.12.02
Alabi, F., Labunmi, L., Olubode, A., Adebayo, A., Emmanuel, S. & Fadeyi, A. (2020). Synthesis and characterization of carboxymethyl cellulose from Musa paradisiaca and Tithonia diversifolia. African Journal of Pure and Applied Chemistry, 14, 9–23. https://doi.org/ 10.5897/AJPAC2019.0821
Asl, S.A., Mousavi, M., & Labbafi, M. (2017). Synthesis and characterization of carboxymethyl cellulose from sugarcane bagasse. Journal of Food Processing Technology, 8(8), 1000687. https://doi:10.4172/2157-7110.1000687
Arshney, V. K., Gupta, P. K., Naithani, S., Khullar, R., Bhatt, A., & Soni, P.L. (2006). Carboxymethylation of α-cellulose isolated from Lantana camara with respect to degree of substitution and rheological behavior. Carbohydrate Polymers 63(1), 40–45. https://doi.org/10.1016/j.carbpol.2005.07.001
Betts, W. B., Dart, R. K., Ball, A. S., & Pedlar, S. L. (1991). Biosynthesis and structure of lignocellulose. In W. B. Betts (Ed) Biodegradation: Natural and Synthetic Materials (pp. 139–155). Berlin, Germany Springer-Verlag.
Bono, A., Ying, P. H., Yan, F. N., Muei, C. L., Sarbatly, R., & Krishnaiah, D. (2009). Synthesis and characterization of carboxymethyl cellulose from palm kernel cake. Advance in Natural and Applied Science 3(1), 5–11.
Fan, L., Wang, L., Gao, S., Wua, P., Li, M., Xie, W., Liu, S., & Wang, W. (2011). Synthesis, characterization and properties of carboxymethyl kappa carrageenan. Carbohydrate Polymers, 86, 1167–1174. https://doi.org/10.1016/j.carbpol.2011.06.010
Haleem, N., Arshad, M., Shahid, M., & Tahir, M. A. (2014). Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydrate Polymers, 113: 249–255. https://doi.org/10.1016/j.carbpol.2014.07.023
Ambjörnsson, H. A., Schenzel, K., & Germgård, U. (2013). Carboxymethyl cellulose produced at different mercerization conditions and characterized by NIR FT raman spectroscopy in combination with multivariate analytical methods. Bioresources, 8(2), 1918–1932. https://doi.org/10.15376/BIORES.8.2.1918-1932
Heydarzadeh, H. D., Najafpour, G. D., & Nazari-Moghaddam, A. A. (2009). Catalyst-free conversion of alkali cellulose to fine carboxymethyl cellulose at mild conditions. World Applied Sciences Journal 6(4), 564–569.
Hong, K. M. (2013). Preparation and characterization of carboxymethyl cellulose from sugarcane bagasse. [Bachelor’s Degree Thesis, Universiti Tunku Abdul Rahman (UTAR)]
Huang, C. M. Y., Chia, P., Lim, S. S., Nai, J. Q., Ding, D. Y., Seow, P. B., Wong, C. W., & Chan, W. C. (2017). Synthesis and characterisation of carboxymethyl cellulose from various agricultural wastes. Cellulose Chemistry and Technology, 51(7-8), 665–672.
Hutomo, G. S., Marseno, D. W., & Supriyanto, S. A. (2012). Synthesis and characterization of sodium carboxymethylcellulose from pod husk of Cacao (Theobroma cacao L.). African Journal of Food Science, 6(6): 180–185. https://doi.org/10.5897/AJFS12.020
Jeyanny, V., Zuhaidi Y. A., Suhaimi, W. C., & Amir, S. K. (2010, August 1–6). Site suitability assessment for sustainable forest plantation establishment of Dyera costulata in a West Malaysian tropical forest. 19th World Congress of Soil Science Soil Solutions for a Changing World, Brisbane, Australia.
Jung, S. J., Kim, S. H., & Chung, I. M. (2015). Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass Bioenergy 83, 322–327. https://doi.org/10.1016/j.biombioe.2015.10.007
Kimani, P., Kareru, P., Madivoli, S., Kairigo, P. K., Maina, E., & Rechab, O. (2016). Comparative Study of Carboxymethyl Cellulose Synthesis from Selected Kenyan Biomass. Chemical Science International Journal 17, 1–8. https://doi.org/10.9734/CSJI/2016/29390
Kucharska, K., Rybarczyk, P., Hołowacz, I., Łukajtis, R., Glinka, M., & Kaminski, M. (2018). Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23(11), 1–32. https://doi.org/ 10.3390/molecules23112937
Mat Soom R, Wan Hassan WH, Md Top AG and Hassan K. 2006. Thermal properties of oil palm fiber, cellulose and its derivatives. Journal of Oil Palm Research, 18, 272–277.
Mohamad Zainol, M., Ab Rasid, N. S., Asmadi, M., & Saidina Amin, N. A. (2021). Carboxymethyl cellulose synthesis from treated oil palm empty fruit bunch using ionic liquid and hydrogen peroxide. ASEAN Engineering Journal, 11(4), 80. 1https://doi.org/0.11113/aej.v11.17866
Palle, I. (2008). Carboxymethylation of cellulose from kenaf (hibiscus cannabinus l.) core for hydrogel production. [Master’s Thesis, Universiti Putra Malaysia]
Parid, D. M., Abd Rahman, N. A., Baharuddin, A. S., Mohammed, M. A. P., Mat Johari, A., & Abdul Razak, S. Z. (2018). Synthesis and characterization of carboxymethyl cellulose from oil palm empty fruit bunch stalk fibres. BioResources, 13(1), 535–554. https://doi.org/10.15376/biores.13.1.535-554
Tuan Mohamood, N. F. A. Z., Abdul Halim, A. H., & Zainuddin, N. (2021). Carboxymethyl Cellulose Hydrogel from Biomass Waste of Oil Palm Empty Fruit Bunch Using Calcium Chloride as Crosslinking Agent. Polymers, 13(23), 4056. https://doi.org/10.3390/polym13234056.
Pinto, E., Wilberforce, A., Patrick, B., Gershon, A., Yen Adams, S. N., Michael, F., Hassan, K., Kwame, S., Caspar, A., Samuel, E., & Mizpah, R. (2022). Cellulose processing from biomass and its derivatization into carboxymethylcellulose: A review. Scientific African, 15, e01078. https://doi.org/10.1016/j.sciaf.2021.e01078
Pushpamalar, V., Langford, S. J., Ahmad, M., & Lim, Y. Y. (2006). Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydrate Polymers, 64, 312–318. https://doi.org/10.1016/j.carbpol.2005.12.003
Rachtanapun, P., Luangkamin, S., Tanprasert, K., & Suriyatem, R. (2012). Carboxymethyl cellulose film from durian rind. LWT - Food Science and Technology, 48(1), 52–58. https://doi.org/10.1016/j.lwt.2012.02.029
Rahman, M. S., Mondal, M. D., Yeasmin, S., Sayeed, M. D., & Hossain, M. D. (2020). Conversion of lignocellulosic corn agro-waste into cellulose derivative and its potential application as pharmaceutical excipient. Processes, 8(711). https://doi.org/10.3390/pr8060711.
TAPPI: T 203 cm-09. (2009). Alpha-, beta- and gamma- cellulose in pulp. 1–5.
TAPPI: T 204 cm-07. (2007). Solvent extractives of woof and pulp. 1–4.
TAPPI: T222 om-11. (2011). Acid-insoluble lignin in wood and pulp.
Tasaso, P. (2015). Optimization of reaction conditions for synthesis of carboxymethyl cellulose from oil palm fronds. International Journal of Chemical Engineering and Applications 6(2), 101–104. https://doi.org/10.7763/IJCEA.2015.V6.460
Germgård, U., & Hedlund, A. (2006). The influence of wood and dissolving pulp properties of carboxymethyl cellulose reaction. [Paper presentation]. 2006 Engineering, Pulping, & Environmental Conference, Karlstad University.
Wise, L. E., Murphy, M., & D’addieco, A. A. (1946). Chlorite holocellulose: Its fractionation and bearing on summative wood analysts and on studies on the hemicelluloses. Paper Trade Journal, 122(2), 35–43.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.