An overview of the biological ammonia treatment, model prediction and control strategies in water and wastewater treatment plant

Authors

  • Fuzieah Subari School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Hafni Fatini Harisson School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Nor Hazelah Kasmuri School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Zalizawati Abdullah School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Suhaiza Hanim Hanipah School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.24191/mjcet.v5i1.14938

Keywords:

Ammonia removal, Artificial neural network, Control strategies, Wastewater treatment plan, Water treatment plant

Abstract

 Water disruption has always been a major issue in Malaysia. The reason for the frequent water disruption is due to the shutdown of water treatment plant (WTP) for unable to process contaminated raw water from the river. In wastewater treatment plant (WWTP), main source of ammonia is from the breakdown of proteins and amino acids in organic waste. Typically, ammonia is not fully removed from the WWTP and most of the ammonia is being discharged together with the plant effluent into the river streams. High levels of ammonia in the water exerts an oxygen demand which causes oxygen depletion. Hence, affecting the aquatic ecosystem and creates a toxic environment for the aquatic life. Biological treatment is known to be the most cost saving method as it only constructs of simple components, chemical free treatment and producing no harm by-products which later cause cost increment for additional treatment. Furthermore, biological treatment is capable in producing high quality treated drinking water that meets the standard water guidelines and regulations. In this paper, the aim is to conduct an overview on the application of biological treatment as an alternative treatment method of ammonia removal in water and wastewater treatment plant. This overview presents the cohesive approach of biological treatment in water and wastewater treatment plant, source of ammonia pollution, standard implies on ammonia concentration to control potential hazards, reported cases and recent pollution status of ammonia globally. In addition, the use of an artificial intelligence for model prediction and control strategies for water treatment have been included in this overview. 

References

Abba, S. I., & Elkiran, G. (2017). Effluent prediction of chemical oxygen demand from the wastewater treatment plant using artificial neural network application. Procedia Computer Science, 120, 156–163. https://doi.org/10.1016/j.procs.2017.11.223

Adam, M. R., Othman, M. H. D., Abu Samah, R., Puteh, M. H., Ismail, A. F., Mustafa, A., A. Rahman, M., & Jaafar, J. (2019). Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development. Separation and Purification Technology, 213(December 2018), 114–132. https://doi.org/10.1016/j.seppur.2018.12.030

Ahammed, M. M., & Davra, K. (2011). Performance evaluation of biosand filter modified with iron oxide-coated sand for household treatment of drinking water. Desalination, 276(1–3), 287–293. https://doi.org/10.1016/j.desal.2011.03.065

AIChE. (n.d.). Secondary Wastewater Treatment. Institue for Sustainability. Retrieved June 13, 2021, from https://www.aiche.org/ifs/resources/glossary/isws-water-glossary/secondary-wastewater-treatment

Al-Mamun, A., & Zainuddin, Z. (2013). Sustainable river water quality management in Malaysia. IIUM Engineering Journal, 14(1). https://doi.org/10.31436/iiumej.v14i1.266

Arabameri, M., Javid, A., & Roudbari, A. (2015). The use of artificial neural network (ann) for modelling of ammonia nitrogen removal from landfill leachate by the ultrasonic process. International Journal of Health Studies, 3, 12–19. https://doi.org/10.22100/ijhs.v1i3.81

Ata, O. N., Kanca, A., Demir, Z., & Yigit, V. (2017). Optimization of ammonia removal from aqueous solution by microwave-assisted air stripping. Water, Air, and Soil Pollution, 228(11). https://doi.org/10.1007/s11270-017-3629-5

Azhar, M. R., & Ali, E. (2014). Advanced control strategy for wastewater treatment process: A parametric study. International Journal of Chemical Engineering and Applications, 5(4), 335–341. https://doi.org/10.7763/ijcea.2014.v5.405

Aziz, M. S. I., Nawawi, S. W., Sudin, S., Wahab, N. A., Faramarzi, M., & Yusof, M. A. M. (2015). Gravitational search algorithm optimization for PID controller tuning in waste-water treatment process. Jurnal Teknologi, 73(3), 103–109. https://doi.org/10.11113/jt.v73.4254

Azman, A. A., Rahiman, M. H. F., Mohammad, N. N., Marzaki, M. H., Taib, M. N., & Ali, M. F. (2017). Modelling and comparative study of PID Ziegler Nichols (ZN) and Cohen-Coon (CC) tuning method for Multi-tube aluminium sulphate water filter (MTAS). Proceedings - 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems, I2CACIS 2017, 2017-Decem(October), 25–30. https://doi.org/10.1109/I2CACIS.2017.8239027

Baraee, I., Mehdi Borghei, S., Takdastan, A., Hasani, A. H., & Javid, A. H. (2016). Performance of biofilters in GAC-sand and anthracite-sand dual-media filters in a water treatment plant in Abadan, Iran. Desalination and Water Treatment, 57(42), 19655–19664. https://doi.org/10.1080/19443994.2015.1101715

Bermejo, M. D., Cantero, F., & Cocero, M. J. (2008). Supercritical water oxidation of feeds with high ammonia concentrations. Pilot plant experimental results and modeling. Chemical Engineering Journal, 137(3), 542–549. https://doi.org/10.1016/j.cej.2007.05.010

Bernet, N. & Sperandio. M. (2009). Principles of nitrifying processes. Environmental technologies to treat nitrogen pollution: principles & engineering, IWA Publishing, 978-1-8433-9222-4. ⟨hal-02812943⟩

Bernet, N., Delgenes, N., Akunna, J. C., Delgenes, J. P., & Moletta, R. (2000). Combined anaerobic-aerobic SBR for the treatment of piggery wastewater. Water Research, 34(2), 611–619. https://doi.org/10.1016/S0043-1354(99)00170-0

Bloganica. (2017). Primary, Secondary, and Tertiary Wastewater Treatment: How Do They Work? - Innovative Solutions for Wastewater Treatment | Organica Water Inc. Organica Water. https://www.organicawater.com/primary-secondary-tertiary-wastewater-treatment-work/

Capodaglio, A. G., Hlavínek, P., & Raboni, M. (2015). Physico-chemical technologies for nitrogen removal from wastewaters: a review. Journal of Applied Sciences, 10(3). https://doi.org/10.4136/1980-993X

Chan-Pacheco, C. R., Valenzuela, E. I., Cervantes, F. J., Quijano, G. (2021). Novel biotechnologies for nitrogen removal and their coupling with gas emissions abatement in wastewater treatment facilities, Science of The Total Environment, Volume 797, 149228, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2021.149228.

Charrois, J. W. A., & Hrudey, S. E. (2007). Breakpoint chlorination and free-chlorine contact time: Implications for drinking water N-nitrosodimethylamine concentrations. Water Research, 41(3), 674–682. https://doi.org/10.1016/j.watres.2006.07.031

Cheng, Q., Nengzi, L., Bao, L., Huang, Y., Liu, S., Cheng, X., Li, B., & Zhang, J. (2017). Distribution and genetic diversity of microbial populations in the pilot-scale biofilter for simultaneous removal of ammonia, iron and manganese from real groundwater. Chemosphere, 182, 450–457. https://doi.org/10.1016/j.chemosphere.2017.05.075

Chew, C. M., Aroua, M. K., & Hussain, M. A. (2018). Advanced process control for ultrafiltration membrane water treatment system. Journal of Cleaner Production, 179, 63–80. https://doi.org/10.1016/j.jclepro.2018.01.075

Chinyama, A., Ncube, R., & Ela, W. (2016). Critical pollution levels in Umguza River, Zimbabwe. Physics and Chemistry of the Earth, 93, 76–83. https://doi.org/10.1016/j.pce.2016.03.008

Dominika, G., Joanna, M., & Jacek, M. (2021). Sulfate reducing ammonium oxidation (SULFAMMOX) process under anaerobic conditions, Environmental Technology & Innovation, Volume 22, 101416, ISSN 2352-1864, https://doi.org/10.1016/j.eti.2021.101416.

Du, R., Cao, S., Li, B., Niu, M., Wang, S., & Peng, Y. (2017). Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters. Water Research, 108, 46–56. https://doi.org/10.1016/j.watres.2016.10.051

Du, X., Wang, J., Jegatheesan, V., & Shi, G. (2018). Dissolved oxygen control in activated sludge process using a neural network-based adaptive PID algorithm. Applied Sciences (Switzerland), 8(2). https://doi.org/10.3390/app8020261

Du, X., Zhang, R., Gan, Z., & Bi, J. (2013). Treatment of high strength coking wastewater by supercritical water oxidation. Fuel, 104, 77–82. https://doi.org/10.1016/j.fuel.2010.09.018

Dubey, M., & Ujjania, N. C. (2013). Water quality and pollution status of Tapi River, Gujarat, India. International Journal of Pure and Applied Zoology, 1(3), 261–266.

El-Din, A. G., & Smith, D. W. (2002). A neural network model to predict the wastewater inflow incorporating rainfall events. Water Research, 36(5), 1115–1126. https://doi.org/10.1016/S0043-1354(01)00287-1

Environmental Protection Agency (EPA). (1998). How Wastewater Treatment Works...The Basics. (EPA 833-F-98-002) United States. https://www3.epa.gov/npdes/pubs/bastre.pdf

European Food Safety Authority (EFSA). (2012). Health risk of ammonium released from water filters. EFSA Journal. doi:10.2903/j.efsa.2012.2918

Fan, M., Li, T., Hu, J., Cao, R., Wu, Q., Wei, X., Li, L., Shi, X., & Ruan, W. (2016). Synthesis and characterization of reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites used for Pb (II) removal. Materials, 9(8). 687. https://doi.org/10.3390/ma9080687

Farid, A. M., Lubna, A., Choo, T. G., Rahim, M. C., & Mazlin, M. (2016). A review on the chemical pollution of Langat River, Malaysia. Asian Journal of Water, Environment and Pollution, 13(1), 9–15. https://doi.org/10.3233/AJW-160002

Feng, S., Xie, S., Zhang, X., Yang, Z., Ding, W., Liao, X., Liu, Y., & Chen, C. (2012). Ammonium removal pathways and microbial community in GAC-sand dual media filter in drinking water treatment. Journal of Environmental Sciences (China), 24(9), 1587–1593. https://doi.org/10.1016/S1001-0742(11)60965-0

Fu, Q., Zheng, B., Zhao, X., Wang, L., & Liu, C. (2012). Ammonia pollution characteristics of centralized drinking water sources in China. Journal of Environmental Sciences (China), 24(10), 1739–1743. https://doi.org/10.1016/S1001-0742(11)61011-5

Fuente, M. J., Garcia-Alvarez, D., Sainz-Palmero, G. I., & Vega, P. (2012). Fault detection in a wastewater treatment plant based on neural networks and PCA. 2012 20th Mediterranean Conference on Control and Automation, MED 2012 - Conference Proceedings, 758–763. https://doi.org/10.1109/MED.2012.6265729

Ganatra, A., & Panchal, D. (2011). Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers. International Journal of Computer Theory and Engineering, 3(2). https://doi.org/10.7763/IJCTE.2011.V3.328

Gazzaz, N. M., Yusoff, M. K., Aris, A. Z., Juahir, H., & Ramli, M. F. (2012). Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Marine Pollution Bulletin, 64(11), 2409–2420. https://doi.org/10.1016/j.marpolbul.2012.08.005

Güçlü, D., & Dursun, Ş. (2010). Artificial neural network modelling of a large-scale wastewater treatment plant operation. Bioprocess and Biosystems Engineering, 33(9), 1051–1058. https://doi.org/10.1007/s00449-010-0430-x

Guo, H., Jeong, K., Lim, J., Jo, J., Kim, Y. M., Park, J. pyo, Kim, J. H., & Cho, K. H. (2015). Prediction of effluent concentration in a wastewater treatment plant using machine learning models. Journal of Environmental Sciences (China), 32, 90–101. https://doi.org/10.1016/j.jes.2015.01.007

Guo, Y. M., Liu, Y. G., Zeng, G. M., Hu, X. J., Xu, W. H., Liu, Y. Q., Liu, S. M., Sun, H. S., Ye, J., & Huang, H. J. (2014). An integrated treatment of domestic wastewater using sequencing batch biofilm reactor combined with vertical flow constructed wetland and its artificial neural network simulation study. Ecological Engineering, 64, 18–26. https://doi.org/10.1016/j.ecoleng.2013.12.040

Gupta, V. K., Sadegh, H., Yari, M., Shahryari Ghoshekandi, R., Maazinejad, B., & Chahardori, M. (2015). Removal of ammonium ions from wastewater a short review in development of efficient methods. Global Journal of Environmental Science and Management, 1(2), 149–158. https://doi.org/10.7508/gjesm.2015.02.007

Guštin, S., & Marinšek-Logar, R. (2011). Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process Safety and Environmental Protection, 89(1), 61–66. https://doi.org/10.1016/j.psep.2010.11.001

Hamidi, H. P., Kenari, S. L. D., & Basu, O. D. (2020). Simultaneous TOC and ammonia removal in drinking-water biofilters: influence of pH and alkalinity. Journal of Environmental Engineering, 146(8), 04020080. https://doi.org/10.1061/(asce)ee.1943-7870.0001758

Han, H. G., Qian, H. H., & Qiao, J. F. (2014). Nonlinear multiobjective model-predictive control scheme for wastewater treatment process. Journal of Process Control, 24(3), 47–59. https://doi.org/10.1016/j.jprocont.2013.12.010

Han, H. G., Zhang, L., Hou, Y., & Qiao, J. F. (2016). Nonlinear model predictive control based on a self-organizing recurrent neural network. IEEE Transactions on Neural Networks and Learning Systems, 27(2), 402–415. https://doi.org/10.1109/TNNLS.2015.2465174

Han, H., & Qiao, J. (2014). Nonlinear model-predictive control for industrial processes: An application to wastewater treatment process. IEEE Transactions on Industrial Electronics, 61(4), 1970–1982. https://doi.org/10.1109/TIE.2013.2266086

Han, M., Zhao, Z. wei, Gao, W., & Cui, F. yi. (2013). Study on the factors affecting simultaneous removal of ammonia and manganese by pilot-scale biological aerated filter (BAF) for drinking water pre-treatment. Bioresource Technology, 145, 17–24. https://doi.org/10.1016/j.biortech.2013.02.101

Hasan, H. A., Abdullah, S. R. S., Kamarudin, S. K., & Kofli, N. T. (2011). Problems of ammonia and manganese in malaysian drinking water treatments. World Applied Sciences Journal, 12(10), 1890–1896.

Hasan, H. A., Jamaludin, S., & Abdullah, S. R. S. (2015). Aeration control based on a neural network in a biological aerated filter for simultaneous removal of ammonia and manganese. Journal of Environmental Science and Technology, 8(6), 278–288. https://doi.org/10.3923/jest.2015.278.288

Hasan, H. A., Muhamad, M. H., Sabri, N. N. M., & Abdullah, S. R. S. (2019). Biofilters as Alternative Method for Ammonia Removal in Water Treatment Plant. International Journal of Engineering & Technology, 8, 256–261.

Hasan, H. A., Muhammad, M. H., & Ismail, N. I. (2020). A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. Journal of Water Process Engineering, 33(November 2019), 101035. https://doi.org/10.1016/j.jwpe.2019.101035

Hawari, A. H., & Alnahhal, W. (2016). Predicting the performance of multi-media filters using artificial neural networks. Water Science and Technology, 74(9), 2225–2233. https://doi.org/10.2166/wst.2016.380

He, B., Kanae, S., Oki, T., Hirabayashi, Y., Yamashiki, Y., & Takara, K. (2011). Assessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling framework. Water Research, 45(8), 2573–2586. https://doi.org/10.1016/j.watres.2011.02.011

Health risk of ammonium released from water filters. (2012). EFSA Journal, 10(10), 2918. https://doi.org/10.2903/j.efsa.2012.2918

Homagai, P. L., & Poudel, S. (2018). Effective removal of nitrate, nitrite, ammonia and iron from contaminated ground water using bio-sand method and sponge layer filtration method. Journal of Nepal Chemical Society, 39.

Hong, S. T., Lee, A. K., Lee, H. H., Park, N. S., & Lee, S. H. (2012). Application of neuro fuzzy PID controller for effective post chlorination in water treatment plant. Desalination and Water Treatment, 47(1–3), 211–220. https://doi.org/10.1080/19443994.2012.696810

Hossain, M. A., Hossain, M. F., Fakruddin, A. N. M., & Khan, S. I. (2016). Removal of ammonia-n pollution from surface water by sustainable environmental techniques removal of ammonia-n pollution from surface water by sustainable environmental techniques. Journal of Ecology and Environmental Sciences, 4.

Huang, J., Liu, P. R., Sun, Q. Y., Zhang, H., Zhang, Y., & Wang, K. (2017). Determination of total nitrogen, ammonia, and nitrite in river water by near-infrared spectroscopy and chemometrics. Analytical Letters, 50(10), 1620–1629. https://doi.org/10.1080/00032719.2016.1238923

Jami, M. S., Husain, I. A. F., Kabashi, N. A., & Abdullah, N. (2012). Multiple inputs artificial neural network model for the prediction of wastewater treatment plant performance. Australian Journal of Basic and Applied Sciences, 6(1), 62–69.

Juahir, H., Zain, S. M., Mohd, ·, Yusoff, K., Hanidza, · T I Tengku, Mohd, · A S, Mohd, A. ·, Toriman, E., Mokhtar, M., Juahir, H., Yusoff, M. K., Hanidza, T. I. T., Armi, · A S M, Armi, A. S. M., Zain, S. M., Toriman, M. E., & Mokhtar, M. (2011). Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environ Monit Assess, 173, 625–641. https://doi.org/10.1007/s10661-010-1411-x

Jun, Y., & Wenfeng, X. (2009). Ammonia biofiltration and community analysis of ammonia-oxidizing bacteria in biofilters. Bioresource Technology, 100(17), 3869–3876. https://doi.org/10.1016/j.biortech.2009.03.021

Kabir, A. H. M. E., Sekine, M., & Ghosh, G. C. (2020). Towards safely managed drinking water supply in the hard-to-reach areas in Bangladesh: Modified biosand filters and safe storage. Desalination and Water Treatment, 173(December 2019), 177–185. https://doi.org/10.5004/dwt.2020.24815

Karri, R. R., Sahu, J. N., & Chimmiri, V. (2018). Critical review of abatement of ammonia from wastewater. Journal of Molecular Liquids, 261(2017), 21–31. https://doi.org/10.1016/j.molliq.2018.03.120

Karsoliya, S. (2012). Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. International Journal of Engineering Trends and Technology, 3(6), 714–717.

Ke, X., Bao, Q., Qi, Y., Huang, X., & Zhang, H. (2018). Toxicity assessment of sediments from the Liaohe River protected area (China) under the influence of ammonia nitrogen, heavy metals, and organic contaminants. Environmental Toxicology and Pharmacology, 59(December 2017), 34–42. https://doi.org/10.1016/j.etap.2018.02.008

Kennedy, T. J., Hernandez, E. A., Morse, A. N., & Anderson, T. A. (2012). hydraulic loading rate effect on removal rates in a biosand filter: A pilot study of three conditions. Water Air Soil Pollution, 5, 4527–4537. https://doi.org/10.1007/s11270-012-1215-4

Khataee, A. R., & Kasiri, M. B. (2011). Modelling of biological water and wastewater treatment processes using artificial neural networks: A Review. Clean - Soil, Air, Water, 39(8), 742–749. https://doi.org/10.1002/clen.201000234

Kim, I. T., Lee, Y. E., Jeong, Y., & Yoo, Y. S. (2020). A novel method to remove nitrogen from reject water in wastewater treatment plants using a methane- and methanol-dependent bacterial consortium. Water Research, 172, 115512. https://doi.org/10.1016/j.watres.2020.115512

Kim, J., Lingaraju, B. P., Rheaume, R., Lee, J. Y., & Siddiqui, K. F. (2010). Removal of ammonia from wastewater effluent by chlorella vulgaris. Tsinghua Science and Technology, 15(4), 391–396. https://doi.org/10.1016/S1007-0214(10)70078-X

Kinidi, L., Tan, I. A. W., Wahab, N. A., Tamrin, K. F., Hipolito, C. N., & Salleh, S. F. (2018). Recent development in ammonia stripping process for industrial wastewater treatment. International Journal of Chemical Engineering, 2018.

Kok, R. L., Van der Merwe, A. F., Schoor, G. V., Uren, K. R. (2019). Statistical modelling of an ammonium nitrate fluidised bed granulator for inference measurement, IFAC-Papers Online, Volume 52, Issue 14, 2019, Pages 135-140, ISSN 2405-8963, https://doi.org/10.1016/j.ifacol.2019.09.177.

Kowalchuk, G. A., Stephen, J. R., De Boer, W., Prosser, J. I., Embley, T. M., & Woldendorp, J. W. (1997). Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Applied and Environmental Microbiology, 63(4), 1489–1497. https://doi.org/10.1128/aem.63.4.1489-1497.1997

Kowalchuk, G. A., Stephen, J. R., De Boer, W., Prosser, J. I., Embley, T. M., & Woldendorp, J. W. (1997). Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Applied and Environmental Microbiology, 63(4), 1489–1497. https://doi.org/10.1128/aem.63.4.1489-1497.1997

Kumar, A. S., & Ahmad, Z. (2012). Model Predictive Control (MPC) and Its Current Issues in Chemical Engineering. Chemical Engineering Communications, 199(4), 472–511. https://doi.org/10.1080/00986445.2011.592446

Kumar, P., Lai, S. H., Mohd, N. S., Kamal, M. R., Afan, H. A., Ahmed, A. N., Sherif, M., Sefelnasr, A., & El-Shafie, A. (2020). Optimised neural network model for river-nitrogen prediction utilizing a new training approach. PLoS ONE, 15(9 September), 1–23. https://doi.org/10.1371/journal.pone.0239509

Kundu, P., Debsarkar, A., Mukherjee, S., & Kumar, S. (2014). Artificial neural network modelling in biological removal of organic carbon and nitrogen for the treatment of slaughterhouse wastewater in a batch reactor. Environmental Technology (United Kingdom), 35(10), 1296–1306. https://doi.org/10.1080/09593330.2013.866698

Lakshmi, P. V., Saritha, V., Chowdhary, K. S., Mallika, G., & Kumar, B. S. S. S. H. (2012). Biosand filter for removal of chemical contaminants from water. Journal of Advanced Laboratory Research in Biology, 3(2), 103–108. https://e-journal.sospublication.co.in/index.php/jalrb/article/view/108%0Ainternal-pdf://0.0.6.38/108.html

Leong, T. (2017, November 20). Retrieved from The Straits Times: https://www.straitstimes.com/asia/se-asia/johor-water-hit-by-ammonia-pollution-again

Leyva-díaz, J. C., González-martínez, A., González-lópez, J., Muñío, M. M., & Poyatos, J. M. (2015). Kinetic modelling and microbiological study of two-step nitrification in a membrane bioreactor and hybrid moving bed biofilm reactor – membrane bioreactor for wastewater treatment. CHEMICAL ENGINEERING JOURNAL, 259, 692–702. https://doi.org/10.1016/j.cej.2014.07.136

Liu, J., Liu, L., Huang, Z., Fu, Y., & Huang, Z. (2020). Contaminant removal and optimal operation of bio-slow sand filtration water treatment based on nature-based solutions. Polish Journal of Environmental Studies, 29(2), 1703–1713. https://doi.org/10.15244/pjoes/109728

Liu, L., Fu, Y., Wei, Q., Liu, Q., Wu, L., Wu, J., & Huo, W. (2019). Applying bio-slow sand filtration for water treatment. Polish Journal of Environmental Studies, 28(4), 2243–2251. https://doi.org/10.15244/pjoes/89544

Lysakovskaa, I. (2015). The Effects Of Temperature And Oxygen Levels On Biofilter Activity. United Nations University Fisheries Training Programme. http://www.unuftp.is/static/fellows/document/lysakovska14prf.pdf

Mahajan, B. (2021). Water Treatment Process Steps. Civiconcepts. https://civiconcepts.com/blog/water-treatment-process

Mangoua-allali, A. L. C., Coulibaly, L., & Ouattara, J. P. (2012). Implementation of biosand filters in rural area for drinking water production. African Journal of Food Science, 6(24), 574–582. https://doi.org/10.5897/AJFS12.141

Mattson, R. R., Wildman, M., & Just, C. (2018). Submerged attached-growth reactors as lagoon retrofits for cold-weather ammonia removal: performance and sizing. Water Science Technology 30 November 2018; 78 (8): 1625–1632. https://doi.org/10.2166/wst.2018.399

Mazloomi, F., & Jalali, M. (2016). Ammonium removal from aqueous solutions by natural Iranian zeolite in the presence of organic acids, cations and anions. Journal of Environmental Chemical Engineering, 4(1), 240–249. https://doi.org/10.1016/j.jece.2015.11.001

McAllister, C. D., Ortiz, A. Y., & Southards, T. J. (2015). Effectiveness of ammonia removal by recirculating sand filters. Proceedings of the Institution of Civil Engineers: Water Management, 168(1), 24–28. https://doi.org/10.1680/wama.13.00091

Mercy, D., & Girirajkumar, S. M. (2017). An algorithmic approach based PSO-PID tuning of a real time conical tank process used in wastewater treatment. Proceedings of the International Conference on Computing Methodologies and Communication, ICCMC, 871–876. https://doi.org/10.1109/ICCMC.2017.8282590

Mohamed, I., Othman, F., Ibrahim, A. I. N., Alaa-Eldin, M. E., & Yunus, R. M. (2015). Assessment of water quality parameters using multivariate analysis for Klang River basin, Malaysia. Environmental Monitoring and Assessment, 187(1), 1–12. https://doi.org/10.1007/s10661-014-4182-y

Mojiri, A., Ohashi, A., Ozaki, N., Aoi, Y., Kindaichi. T. (2020). Integrated anammox-biochar in synthetic wastewater treatment: Performance and optimization by artificial neural network, Journal of Cleaner Production, Volume 243, 118638, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2019.118638.

Mtavangu, S., Rugaika, A. M., Hilonga, A., & Njau, K. N. (2017). Performance of constructed wetland integrated with sand filters for treating high turbid water for drinking. Water Practice and Technology, 12(1), 25–42. https://doi.org/10.2166/wpt.2017.007

Mulas, M., Tronci, S., Corona, F., Haimi, H., Lindell, P., Heinonen, M., Vahala, R., & Baratti, R. (2015). Predictive control of an activated sludge process: An application to the Viikinmäki wastewater treatment plant. Journal of Process Control, 35, 89–100. https://doi.org/10.1016/j.jprocont.2015.08.005

Murphy, H. M., Mcbean, E. A., & Farahbakhsh, K. (2010). Nitrification, denitrification and ammonification in point-of-use biosand filters in rural Cambodia. Journal of Water and Health, 803–817. https://doi.org/10.2166/wh.2010.163

Mwabi, J. K., Adeyemo, F. E., Mahlangu, T. O., Mamba, B. B., Brouckaert, B. M., Swartz, C. D., Offringa, G., Mpenyana-Monyatsi, L., & Momba, M. N. B. (2011). Household water treatment systems: A solution to the production of safe drinking water by the low-income communities of Southern Africa. Physics and Chemistry of the Earth, 36(14–15), 1120–1128. https://doi.org/10.1016/j.pce.2011.07.078

Nall, R. (2018). Raw water: Is it safe to drink? Medical News Today. https://www.medicalnewstoday.com/articles/320892

Nasr, M. S., Moustafa, M. A. E., Seif, H. A. E., & El Kobrosy, G. (2012). Application of artificial neural network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT. Alexandria Engineering Journal, 51(1), 37–43. https://doi.org/10.1016/j.aej.2012.07.005

National Center for Biotechnology Information. (2021). Ammonia. Retrieved from PubChem Compound Summary for CID 222, Ammonia: https://pubchem.ncbi.nlm.nih.gov/compound/Ammonia

Nurul-Ruhayu, M.-R., An, Y. J., & Khairun, Y. (2015). Detection of river pollution using water quality index: a case study of tropical rivers in Penang Island, Malaysia. Open Access Library Journal. https://doi.org/10.4236/oalib.1101209

Nuruzzaman, M., Mamun, A. A., & Salleh, M. N. B. (2018). Determining ammonia nitrogen decay rate of Malaysian river water in a laboratory flume. International Journal of Environmental Science and Technology, 15(6), 1249–1256. https://doi.org/10.1007/s13762-017-1482-0

Nuruzzaman, M., Mamun, A. Al, & Salleh, M. N. Bin. (2015). Upgrading of small sewage treatment plants for ammonia removal - case of a university campus. ARPN Journal of Engineering and Applied Sciences, 10(23), 17391–17396.

Ofman, P., & Struk-sokołowska, J. (2019). Artificial neural network (ANN) approach to modelling of selected nitrogen forms removal from oily wastewater in anaerobic and aerobic phase GSBR process phases. Water, 11(8), 1594.

Owodunni, A. A., & Ismail, S. (2021). Revolutionary technique for sustainable plant-based green coagulants in industrial wastewater treatment—A review. Journal of Water Process Engineering, Volume 42, 102096, ISSN 2214-7144, https://doi.org/10.1016/j.jwpe.2021.102096.

Ozyonar, F., Karagozoğlu, B., Kobya, M., & Karagozoglu, B. (2012). Air stripping of ammonia from coke wastewater. Journal of Environmental Science and Technology, 15(2), 85–91. https://www.researchgate.net/publication/277774275

Pakrou, S., Mehrdadi, N., & Baghvand, A. (2015). ANN Modelling to predict the COD and efficiency of waste pollutant removal from municipal wastewater treatment plants. Current World Environment, 10(Special-Issue1), 873–881. https://doi.org/10.12944/cwe.10.special-issue1.106

Park, T. J., Lee, J. H., Lee, M. S., Park, C. H., Lee, C. H., Moon, S. D., Chung, J., Cui, R., An, Y. J., Yeom, D. H., Lee, S. H., Lee, J. K., & Zoh, K. D. (2018). Development of water quality criteria of ammonia for protecting aquatic life in freshwater using species sensitivity distribution method. Science of the Total Environment, 634, 934–940. https://doi.org/10.1016/j.scitotenv.2018.04.018

Pisa, I., Santín, I., Vicario, J. L., Morell, A., & Vilanova, R. (2019). ANN-based soft sensor to predict effluent violations in wastewater treatment plants. Sensors (Switzerland), 19(6), 1–26. https://doi.org/10.3390/s19061280

Qiu, Y., Liu, Y., & Huang, D. (2016). Date-driven soft-sensor design for biological wastewater treatment using deep neural networks and genetic algorithms. Journal of Chemical Engineering of Japan, 49(10), 925–936. https://doi.org/10.1252/jcej.16we016

Rajasekaran, S., & Kannadasan, T. (2013). An improved PID controller design based on model predictive control for a shell and tube heat exchanger 1. Australian Journal of Basic and Applied Sciences, 7(7), 679–685.

Rathore, N. S., Singh, V. P., & Kumar, B. (2018). Controller design for Doha water treatment plant using grey Wolf optimization. Journal of Intelligent and Fuzzy Systems, 35(5), 5329–5336. https://doi.org/10.3233/JIFS-169815

Revollar, S., Vega, P., Vilanova, R., & Francisco, M. (2017). Optimal control of wastewater treatment plants using economic-oriented model predictive dynamic strategies. Applied Sciences (Switzerland), 7(8). https://doi.org/10.3390/app7080813

Revollar, S., Vilanova, R., Vega, P., Francisco, M., & Meneses, M. (2020). Wastewater treatment plant operation: Simple control schemes with a holistic perspective. Sustainability (Switzerland), 12(3), 1–28. https://doi.org/10.3390/su12030768

Sabri, L. A., & AL-Mshat, H. A. (2015). Implementation of Fuzzy and PID Controller to Water Level System using LabView. International Journal of Computer Applications, 116(11), 6–10. https://doi.org/10.5120/20378-2599

Saidu, M. M.-G. (2009). Temperature Impact on Nitrification and Bacterial Growth Kinetics in Acclimating Recirculating Aquaculture Systems Biofilters. Engineering Science and Materials Commons, 180. http://etd.lsu.edu/docs/available/etd-07092009-141241/

Sajuni, N. R., Ahmad, A. L., & Vadivelu, V. M. (2010). Effect of Filter Media Characteristics, pH and Temperature on the Ammonia Removal in the Wastewater. Journal of Applied Sciences.

Sánchez Guillén, J.A., Cuéllar Guardado, P.R., Lopez Vazquez, C.M., de Oliveira Cruz, L.M., Brdjanovic, D., van Lier, J.B. (2015). Anammox cultivation in a closed sponge-bed trickling filter, Bioresource Technology, Volume 186, Pages 252-260, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2015.03.073.

Santin, I., Pedret, C., Meneses, M., & Vilanova, R. (2015). Artificial Neural Network for nitrogen and ammonia effluent limit violations risk detection in Wastewater Treatment Plants. 2015 19th International Conference on System Theory, Control and Computing, ICSTCC 2015 - Joint Conference SINTES 19, SACCS 15, SIMSIS 19, 589–594. https://doi.org/10.1109/ICSTCC.2015.7321357

Sedaghatdoost, A. (2020) Simulating the transport of dissolved ammonium-nitrogen and phosphate-phosphorous to streams using artificial neural network (ANN). arXiv:2005.05219

Seruga, P., Krzywonos, M., Pyzanowska, J., Urbanowska, A., Pawlak-Kruczek, H., & Niedźwiecki, Ł. (2019). Removal of ammonia from the municipal waste treatment effuents using natural minerals. Molecules, 24(20). https://doi.org/10.3390/molecules24203633

Shore, J. L., M’Coy, W. S., Gunsch, C. K., & Deshusses, M. A. (2012). Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater. Bioresource Technology, 112, 51–60. https://doi.org/10.1016/j.biortech.2012.02.045

Subari, F., Kamaruzzaman, M. A., Abdullah, S. R. S., Hasan, H. A., & Othman, A. R. (2018). Simultaneous removal of ammonium and manganese in slow sand biofilter (SSB) by naturally grown bacteria from lake water and its diverse microbial community. Journal of Environmental Chemical Engineering, 6(5), 6351–6358. https://doi.org/10.1016/j.jece.2018.09.053

Subari, F., Sheikh Abdullah, S. R., Abu Hasan, H., & Abd. Rahman, N. (2018). Biological removal of ammonia by naturally grown bacteria in sand biofilter. Malaysian Journal of Analytical Sciences, 22(2), 346–352. https://doi.org/10.17576/mjas-2018-2202-22

Suprihatin, S., Cahyaputri, B., Romli, M., & Yani, M. (2017). Use of biofilter as pre-treatment of polluted river water for drinking water supply. Environmental Engineering Research, 22(2), 203–209. https://doi.org/10.4491/eer.2016.110

Suratman, S., Mohd Sailan, M. I., Hee, Y. Y., Bedurus, E. A., & Latif, M. T. (2015). A preliminary study of water quality index in Terengganu River basin, Malaysia. Sains Malaysiana, 44(1), 67–73. https://doi.org/10.17576/jsm-2015-4401-10

Tabassum, S. (2019). A combined treatment method of novel Mass Bio System and ion exchange for the removal of ammonia nitrogen from micro-polluted water bodies. Chemical Engineering Journal, 378(April), 122217. https://doi.org/10.1016/j.cej.2019.122217

Temel, F. A., Yolcu, Ö. C., Kuleyin, A. (2021). A multilayer perceptron-based prediction of ammonium adsorption on zeolite from landfill leachate: Batch and column studies. Journal of Hazardous Materials, Volume 410, 124670, ISSN 0304-3894, https://doi.org/10.1016/j.jhazmat.2020.124670.

Timmons, M. B. & Ebeling, J. M. (2010). Recirculating aquaculture. (2nd ed.). Cayuga Aqua Ventures.

Tonelli, A. R., & Pham, A. (2009). Bronchiectasis, a long-term sequela of ammonia inhalation: A case report and review of the literature. Burns, 35(3), 451–453. https://doi.org/10.1016/j.burns.2008.02.007

Treacy, J. (2019). Drinking water treatment and challenges in developing countries. In N. Potgieter and A. N. T. Hoffman (Eds.), The relevance of hygiene to health in developing countries. Intech Open, DOI: 10.5772/intechopen.80780

Tümer, A. E., & Edebali, S. (2015). An Artificial Neural Network Model for Wastewater Treatment Plant of Konya. International Journal of Intelligent Systems and Applications in Engineering, 3(January), 131–135. https://doi.org/10.1039/b000000x

Tuser, C. (2021). What is Activated Sludge? Water & Wastes Digest. https://www.wwdmag.com/sludge-dewatering/what-activated-sludge

Verma, A. K., & Saksena, D. N. (2010). Assessment of water quality and pollution status of Kalpi (Morar) River, Gwalior, Madhya Pradesh : with special reference to conservation and management plan. Society of Applied Sciences, 1(2), 419–429.

Vrečko, D., Hvala, N., & Stražar, M. (2011). The application of model predictive control of ammonia nitrogen in an activated sludge process. Water Science and Technology, 64(5), 1115–1121. https://doi.org/10.2166/wst.2011.477

Wan Mohtar, W. H. M., Abdul Maulud, K. N., Muhammad, N. S., Sharil, S., & Yaseen, Z. M. (2019). Spatial and temporal risk quotient-based river assessment for water resources management. Environmental Pollution, 248, 133–144. https://doi.org/10.1016/j.envpol.2019.02.011

Wang, C., Shan, B., Zhang, H., & Zhao, Y. (2014). Limitation of spatial distribution of ammonia-oxidizing microorganisms in the Haihe River, China, by heavy metals. Journal of Environmental Sciences (China), 26(3), 502–511. https://doi.org/10.1016/S1001-0742(13)60443-X

Wang, D., Shen, J., Zhu, S., & Jiang, G. (2020). Model predictive control for chlorine dosing of drinking water treatment based on support vector machine model. Desalination and Water Treatment, 173, 133–141. https://doi.org/10.5004/dwt.2020.24144

Wang, X., Ratnaweera, H., Holm, J. A., & Olsbu, V. (2017). Statistical monitoring and dynamic simulation of a wastewater treatment plant: A combined approach to achieve model predictive control. Journal of Environmental Management, 193, 1–7. https://doi.org/10.1016/j.jenvman.2017.01.079

Wang, Y. L., Xu, X., Jia, R., Liu, B., Song, W., & Jia, J. (2018). Experimental study on the removal of organic pollutants and NH3-N from surface water via an integrated copolymerization air flotation-carbon sand filtration process. Journal of Water Supply: Research and Technology - AQUA, 67(5), 506–516. https://doi.org/10.2166/aqua.2018.035

World Health Organization. (2003). Ammonia in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality. World Health Organization.

World Health Organization. (2018). Linking Technology Choice With Operation And Maintenance. https://www.who.int/water_sanitation_health/hygiene/om/linkingchap6.pdf

Young, B. (2018). What Is “Raw” Water, and Should You Drink It? Everyday Health. https://www.everydayhealth.com/healthy-living/what-raw-water-should-you-drink-it/

Zeng, J., & Liu, J. (2015). Economic model predictive control of wastewater treatment processes. Industrial and Engineering Chemistry Research, 54(21), 5710–5721. https://doi.org/10.1021/ie504995n

Zhang, C., Shan, B., Tang, W., Wang, C., & Zhang, L. (2019). Identifying sediment-associated toxicity in rivers affected by multiple pollutants from the contaminant bioavailability. Ecotoxicology and Environmental Safety, 171(August 2018), 84–91. https://doi.org/10.1016/j.ecoenv.2018.12.075

Zhang, L., Xu, E. G., Li, Y., Liu, H., Vidal-Dorsch, D. E., & Giesy, J. P. (2018). Ecological risks posed by ammonia nitrogen (AN) and un-ionized ammonia (NH3) in seven major river systems of China. Chemosphere, 202, 136–144. https://doi.org/10.1016/j.chemosphere.2018.03.098

Zhang, T., Li, Q., Ding, L., Ren, H., Xu, K., Wu, Y., & Sheng, D. (2011). Modelling assessment for ammonium nitrogen recovery from wastewater by chemical precipitation. Journal of Environmental Sciences, 23(6), 881–890. https://doi.org/10.1016/S1001-0742(10)60485-8

Zhang, W. S., Swaney, D. P., Li, X. Y., Hong, B., Howarth, R. W., & Ding, S. H. (2015). Anthropogenic point-source and non-point-source nitrogen inputs into Huai River basin and their impacts on riverine ammonia-nitrogen flux. Biogeosciences, 12(14), 4275–4289. https://doi.org/10.5194/bg-12-4275-2015

Zhang, W., Zhang, R., Yang, Y., Huang, T., & Wen, G. (2019). Removal of high concentrations of ammonium from groundwater in a pilot-scale system through aeration at the bottom layer of a chemical catalytic oxidation filter. International Journal of Environmental Research and Public Health, 16(20), 3989. https://doi.org/10.3390/ijerph16203989

Zhang, Y., Gao, X., Smith, K., Inial, G., Liu, S., Conil, L. B., & Pan, B. (2019). Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. Water Research, 164, 114888. https://doi.org/10.1016/j.watres.2019.114888

Zhao, M. M., Wang, S.M, Chen, Y. P, Wu, J. H, Xue, L. G, & Fan, T. T. (2020). Pollution status of the Yellow River tributaries in middle and lower reaches. Science of the Total Environment, 722, 137861. https://doi.org/10.1016/j.scitotenv.2020.137861

Zhao, Y., Guo, L., Liang, J., & Zhang, M. (2016). Seasonal artificial neural network model for water quality prediction via a clustering analysis method in a wastewater treatment plant of China. Desalination and Water Treatment, 57(8), 3452–3465. https://doi.org/10.1080/19443994.2014.986202

Zhu, T. T., Lai, W. X., Zhang, Y. B., Liu, Y. W. (2022). Feammox process driven anaerobic ammonium removal of wastewater treatment under supplementing Fe (III) compounds, Science of The Total Environment, Volume 804,149965, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2021.149965.

Downloads

Published

2022-04-30

How to Cite

Subari, F., Harisson, H. F., Kasmuri, N. H., Abdullah, Z., & Hanipah, S. H. (2022). An overview of the biological ammonia treatment, model prediction and control strategies in water and wastewater treatment plant. Malaysian Journal of Chemical Engineering &Amp; Technology, 5(1), 8–28. https://doi.org/10.24191/mjcet.v5i1.14938