An overview of the extraction methods of plant-based natural antioxidant compounds
DOI:
https://doi.org/10.24191/mjcet.v4i2.13055Keywords:
Natural antioxidant, Extraction, Conventional extraction, Natural resources, Health benefitsAbstract
Natural antioxidants are widely used in food additives, application in functional foods or also known as ingredients that offer health benefits that extend beyond their nutritional value, and pharmaceutical. These natural antioxidants such as carotenoids, vitamins, and polyphenol can be obtained from fruit, vegetables, and traditional herbal medicines. However, there have several issues regarding the conventional extraction method to extract natural antioxidants compounds from food and medicinal plants such as require a large volume of solvent and long extraction time. Therefore, new green extraction methods such as microwave-assisted, ultrasound-assisted, pulsed electric field, enzyme-assisted, supercritical fluid, and pressurised liquid, technologies were studied to overcome these constraints. Thus, different types of extraction and their mechanism in natural antioxidant compounds extraction was further discussed in this study. Besides, the main classes, source of natural antioxidants and their health benefits also were presented in this paper.
References
Ade-Omowaye, B. I. O., Angersbach, A., Taiwo, K. A., & Knorr, D. (2001). Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant-based foods. Trends in Food Science & Technology, 12(8), 285–295. https://doi.org/10.1016/S0924-2244(01)00095-4
Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., Godbout, S., & Valéro, J. R. (2011). extraction and analysis of polyphenols: Recent trends. Critical Review Biotechnology, 31(3), 227–249. https://doi.org/10.3109/07388551.2010.513677
Altemimi, A., Watson, D. G., Choudhary, R., Dasari, M. R., & Lightfoot, D. A. (2016). Ultrasound assisted extraction of phenolic compounds from peaches and pumpkins. PLOS ONE, 11(2), e0148758. https://doi.org/10.1371/journal.pone.0148758
Amit, K., & Priyadarsini, K. I. (2011). Free radicals, oxidative stress, and importance of antioxidants in human health. Journal of Medical & Allied Sciences, 1(2), 53-60. https://doi.org/10.4103/0973-7847.70902
Anel-lópez, L., Álvarez-rodríguez, M., García-álvarez, O., Álvarez, M., Maroto-morales, A., Anel, L., Paz, P. D., Garde, J. J., & Martínez-pastor, F. (2012). Reduced glutathione and Trolox (vitamin E) as extender supplements in cryopreservation of red deer epididymal spermatozoa. 135, 37–46. https://doi.org/10.1016/j.anireprosci.2012.09.001.
Angersbach, U. A., Heinz, V., & Knorr, D. (2000). Effects of pulsed electric fields on cell membranes in real food systems. 135–149. https://doi.org/10.1016/S1466-8564(00)00010-2
Anwar, H. (2018). Antioxidants from Natural Sources. In E. S. a. G. M. Azzam (Ed.), Antioxidants in Foods and Its Applications (pp. 3–28). Intech Open. https://doi.org/https://doi.org/10.5772/intechopen.75961
Asghari, J., Ondruschka, B., & Mazaheritehrani, M. (2011). Extraction of bioactive chemical compounds from the medicinal Asian plants by microwave irradiation. Journal of Medicinal Plants Research, 5(4), 495–506. https://doi.org/10.5897/JMPR.9000641
Baiano, A., & Del Nobile, M. A. (2016). Antioxidant compounds from vegetable matrices: biosynthesis, occurrence, and extraction systems. Critical Reviews in Food Science and Nutrition, 56(12), 2053–2068. https://doi.org/10.1080/10408398.2013.812059
Belwal, T., Dhyani, P., Bhatt, I. D., Rawal, R. S., & Pande, V. (2016). Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chemistry, 207, 115–124. https://doi.org/10.1016/j.foodchem.2016.03.081
Bensebia, O., Bensebia, B., Allia, K., & Barth, D. (2016). Supercritical CO2 extraction of triterpenes from rosemary leaves: Kinetics and modelling. Separation Science and Technology (Philadelphia), 51(13), 2174–2182. https://doi.org/10.1080/01496395.2016.1202977
Biswas, S. K., McClure, D., Jimenez, L. A., Megson, I. L., & Rahman, I. (2005). Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxidant and Redox Signaling, 7(1–2), 32–41. https://doi.org/10.1089/ars.2005.7.32
Bouras, M., Chadni, M., Barba, F. J., Grimi, N., Bals, O., & Vorobiev, E. (2015). Optimization of microwave-assisted extraction of polyphenols from Quercus bark. Industrial Crops and Products, 77, 590–601. https://doi.org/10.1016/j.indcrop.2015.09.018
Bozan, B., & Altinay, R. C. (2014). Accelerated solvent extraction of flavan-3-OL derivatives from grape seeds. Food Science and Technology Research, 20(2), 409–414. https://doi.org/10.3136/fstr.20.409
Breithaupt, D. E. (2004). Simultaneous HPLC determination of carotenoids used as food coloring additives: Applicability of accelerated solvent extraction. Food Chemistry, 86(3), 449–456. https://doi.org/10.1016/j.foodchem.2003.10.027
Cai, Z., Qu, Z., Lan, Y., Zhao, S., Ma, X., Wan, Q., Jing, P., & Li, P. (2016). Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes. Food Chemistry, 197, 266–272. https://doi.org/10.1016/j.foodchem.2015.10.110
Castro-López, C., Rojas, R., Sánchez-Alejo, G. N.-M. E. J., & Martínez-Ávila, G. C. G. (2016). Phenolic compounds recovery from grapefruit and by- products: An Overview of extraction methods.
Chen, A. Y., & Chen, Y. C. (2013). A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chemistry, 138(4), 2099-2107. https://doi.org/10.1016/j.foodchem.2012.11.139
Cheng, X., Bi, L., Zhao, Z., & Chen, Y. (2015, 2015/08). Advances in enzyme assisted extraction of natural products. Proceedings of the 3rd International Conference on Material, Mechanical and Manufacturing Engineering,
Cowan, M. M. (1999). Plant product as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582. https://doi.org/10.1128/CMR.12.4.564
De Camargo, A. C., Regitano-d’Arce, M. A. B., Biasoto, A. C. T., & Shahidi, F. (2016). Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities. Food Chemistry, 212, 395–402. https://doi.org/10.1016/j.foodchem.2016.05.047
De Groot, P., & Munden, R. F. (1990). Lung cancer epidemiology, risk factors, and prevention. Radiologic clinics of North America, 50(5), 863–876. https://doi.org/10.1016/j.rcl.2012.06.006
Delsart, C., Ghidossi, R., Poupot, C., Cholet, C., Grimi, N., Vorobiev, E., Milisic, V., & Mietton Peuchot, M. (2012). Enhanced extraction of phenolic compounds from Merlot grapes by pulsed electric field treatment. American Journal of Enology and Viticulture, 63(2), 205. https://doi.org/10.5344/ajev.2012.11088
Esclapez, M. D., García-Pérez, J. V., Mulet, A., & Cárcel, J. A. (2011). Ultrasound-assisted extraction of natural products. Food Engineering Reviews, 3(2), 108. https://doi.org/10.1007/s12393-011-9036-6
Fincan, M., & Dejmek, P. (2002). In situ visualization of the effect of a pulsed electric field on plant tissue. Journal of Food Engineering, 55(3), 223–230. https://doi.org/10.1016/S0260-8774(02)00079-1
Flórez, N., Conde, E., & Domínguez, H. (2015). Microwave assisted water extraction of plant compounds. Journal of Chemical Technology & Biotechnology, 90(4), 590–607. https://doi.org/10.1002/jctb.4519
Fu, L., Xu, B. T., Xu, X. R., Gan, R. Y., Zhang, Y., Xia, E. Q., & Li, H. B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry, 129(2), 345–350. https://doi.org/10.1016/j.foodchem.2011.04.079
Greenlee, H. (2012). Natural products for cancer prevention. Seminars in Oncology Nursing, 28(1), 29-44. https://doi.org/10.1016/j.soncn.2011.11.004
Han, S.-F., Jin, W., Yang, Q., El-Fatah Abomohra, A., Zhou, X., Tu, R., Chen, C., Xie, G.-J., & Wang, Q. (2019). Application of pulse electric field pre-treatment for enhancing lipid extraction from Chlorella pyrenoidosa grown in wastewater. Renewable Energy, 133, 233–239. https://doi.org/10.1016/j.renene.2018.10.034
He, B., Zhang, L.-L., Yue, X.-Y., Liang, J., Jiang, J., Gao, X.-L., & Yue, P.-X. (2016). Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chemistry, 204, 70–76. https://doi.org/10.1016/j.foodchem.2016.02.094
Heinz, V., Toepfl, S., & Knorr, D. (2003). Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. Innovative Food Science & Emerging Technologies, 4(2), 167–175. https://doi.org/10.1016/S1466-8564(03)00017-1
Herrero, M., Sánchez-Camargo, A. d. P., Cifuentes, A., & Ibáñez, E. (2015). Plants, seaweeds, microalgae, and food by-products as natural sources of functional ingredients obtained using pressurised liquid extraction and supercritical fluid extraction. Trends in Analytical Chemistry, 71, 26–38. https://doi.org/10.1016/j.trac.2015.01.018
Howard, L., & Pandjaitan, N. (2008). Pressurized liquid extraction of flavonoids from spinach. Journal of Food Science, 73(3), 151–157. https://doi.org/10.1111/j.1750-3841.2007.00658.x
Hui, C., Bin, Y., Xiaoping, Y., Long, Y., Chunye, C., Mantian, M., & Wenhua, L. (2010). Anticancer activities of an anthocyanin-rich extract from black rice against breast cancer cells in vitro and in vivo. Nutrition and cancer, 62(8), 1128–1136. https://doi.org/10.1080/01635581.2010.494821
Ibañez, E., Herrero, M., Mendiola, J. A., & Castro-Puyana, M. (2012). Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates. In M. Hayes (Ed.), Marine Bioactive Compounds: Sources, Characterization and Applications (pp. 55–98). Springer US. https://doi.org/10.1007/978-1-4614-1247-2_2
Jomova, K., & Valko, M. (2013). Health protective effects of carotenoids and their interactions with other biological antioxidants. European Journal of Medicinal Chemistry, 70, 102–110. https://doi.org/10.1016/j.ejmech.2013.09.054
Kamali, H., Khodaverdi, E., Hadizadeh, F., & Ghaziaskar, S. H. (2016). Optimization of phenolic and flavonoid content and antioxidants capacity of pressurized liquid extraction from Dracocephalum kotschyi via circumscribed central composite. Journal of Supercritical Fluids, 107, 307–314. https://doi.org/10.1016/j.supflu.2015.09.028
Kaufmann, B., & Christen, P. (2002). Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochemical Analysis, 13(2), 105–113. https://doi.org/10.1002/pca.631
Kim, A. y., Jeong, Y.-j., Bok, Y., Lee, M.-k., Jeon, S.-m., McGregor, R. A., & Choi, M.-s. (2012). Dose dependent effects of lycopene enriched tomato-wine on liver and adipose tissue in high-fat diet fed rats. Food Chemistry, 130, 42–48. https://doi.org/10.1016/j.foodchem.2011.06.050
Kurzawa-zegota, M., Najafzadeh, M., Baumgartner, A., & Anderson, D. (2012). The protective effect of the flavonoids on food-mutagen-induced DNA damage in peripheral blood lymphocytes from colon cancer patients. Food and Chemical Toxicology, 50, 124–129. https://doi.org/10.1016/j.fct.2011.08.020
Kusuma, H. S., & Mahfud, M. (2016). Response Surface Methodology for Optimization Studies of Microwave assisted Extraction of Sandalwood Oil. Journal of Materials and Environmental Science, 7(6), 1958–1971.
Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering, 54(4), 337–346. https://doi.org/10.1016/S0260-8774(01)00220-5
Li, A.-N., Li, S., Xu, D.-P., Xu, X.-R., Chen, Y.-M., Ling, W.-H., Chen, F., & Li, H.-B. (2015). Optimization of ultrasound-assisted extraction of Lycopene from papaya processing waste by response surface methodology. Food analytical methods, 8(5), 1207–1214. https://doi.org/10.1007/s12161-014-9955-y
Li, S., Tan, H. Y., Wang, N., Zhang, Z. J., Lao, L., Wong, C. W., & Feng, Y. (2015). The role of oxidative stress and antioxidants in liver diseases. International Journal of Molecular Sciences, 16(11), 26087–26124. https://doi.org/10.3390/ijms161125942
Li, Y., Fabiano-tixier, A. S., Tomao, V., Cravotto, G., & Chemat, F. (2013). Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrasonics Sonochemistry., 20, 12–18. https://doi.org/10.1016/j.ultsonch.2012.07.005
Liu, J. J., Gasmalla, M. A. A., Li, P., & Yang, R. (2016). Enzyme-assisted extraction processing from oilseeds: Principle, processing, and application. Innovative Food Science & Emerging Technologies, 35, 184–193. https://doi.org/10.1016/j.ifset.2016.05.002
Liu, X., Hu, Y., & Wei, D. (2014). Optimization of enzyme-based ultrasonic/microwave-assisted extraction and evaluation of antioxidant activity of orcinol glucoside from the rhizomes of Curculigo orchioides Gaertn. Medicinal Chemistry Research, 23(5), 2360–367. https://doi.org/10.1007/s00044-013-0834-7
Liu, X., Yang, D. L., Liu, J. J., Xu, K., & Wu, G. H. (2014). Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves. Chemical Papers, 68(3), 316–323. https://doi.org/10.2478/s11696-013-0451-4
López, N., Puértolas, E., Condón, S., Raso, J., & Alvarez, I. (2009). Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. Journal of Food Engineering, 90, 60–66. https://doi.org/10.1016/j.jfoodeng.2008.06.002
López, N., Puértolas, E., Condón, S., Álvarez, I., & Raso, J. (2008). Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innovative Food Science and Emerging Technologies, 9(4), 477–482. https://doi.org/10.1016/j.ifset.2007.11.001
Lu, J., Xu, Y., Yang, M., Fu, X., Luo, F., & Li, Z. (2015). Optimization of Ultrasound-Assisted Extraction of Flavonoids from Cryptotaenia japonica Hassk. and Evaluation of Antioxidant Activity. Journal of Agricultural Science, 7(7). https://doi.org/10.5539/jas.v7n7p138
Luengo, E., Álvarez, I., & Raso, J. (2013). Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innovative Food Science & Emerging Technologies, 17, 79–84. https://doi.org/10.1016/j.ifset.2012.10.005
Luque de Castro, M. D., & Garcı́a-Ayuso, L. E. (1998). Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Analytica Chimica Acta, 369(1), 1–10. https://doi.org/10.1016/S0003-2670(98)00233-5
Luthria, D. L. (2008). Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chemistry, 107(2), 745–752. https://doi.org/10.1016/j.foodchem.2007.08.074
Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jime, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727
Maran, J. P., Priya, B., & Manikandan, S. (2014). Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp. Journal of Food Science and Technology, 51(9), 1938–1946. https://doi.org/10.1007/s13197-013-1237-y
Markom, M., Singh, H., & Hasan, M. (2018). Supercritical CO2 fractionation of crude palm oil. The Journal of Supercritical Fluids, 20(1), 45–53. https://doi.org/10.1016/S0896-8446(00)00104-2
Mercer, P., & Armenta, R. E. (2011). Developments in oil extraction from microalgae. European Journal of Lipid Science and Technology, 113(5), 539–547. https://doi.org/10.1002/ejlt.201000455
Milutinović, M., Radovanović, N., Ćorović, M., Šiler-Marinković, S., Rajilić-Stojanović, M., & Dimitrijević-Branković, S. (2015). Optimisation of microwave-assisted extraction parameters for antioxidants from waste Achillea millefolium dust. Industrial Crops and Products, 77, 333–341. https://doi.org/https://doi.org/10.1016/j.indcrop.2015.09.007
Mushtaq, M., & Sultana, B. (2014). RSM based optimized enzyme-assisted extraction of antioxidant phenolics from underutilized watermelon (Citrullus lanatus Thunb.) rind. Journal of Food Science and Technology, 52(8), 5048–5056. https://doi.org/10.1007/s13197-014-1562-9
Nawaz, H., Shad, M. A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56, e17129. https://doi.org/10.1590/s2175-7902019000417129
Nguyen, V. T., Sakoff, J. A., & Scarlett, C. J. (2017). Physicochemical Properties, Antioxidant and Cytotoxic Activities of Crude Extracts and Fractions from Phyllanthus amarus. Medicines (Basel, Switzerland), 4(2), 1–15. https://doi.org/10.3390/medicines4020042
Oroian, M., & Escriche, I. (2015). Antioxidants: Characterization, natural sources, extraction, and analysis. Food Research International, 74, 10–36. https://doi.org/10.1016/j.foodres.2015.04.018
Pasaporte, M. S., Rabaya, F. J. R., Toleco, M. M., & Flores, D. M. (2014). Xanthophyll content of selected vegetables commonly consumed in the Philippines and the effect of boiling. Food Chemistry, 158, 35–40. https://doi.org/10.1016/j.foodchem.2014.02.090
Pasrija, D., & Anandharamakrishnan, C. (2015). Techniques for extraction of green tea polyphenols: A Review. Food and Bioprocess Technology, 8(5), 935–950. https://doi.org/10.1007/s11947-015-1479-y
Pereira, P., Cebola, M.-J., Oliveira, M. C., & Bernardo-Gil, M. G. (2016). Supercritical fluid extraction vs conventional extraction of myrtle leaves and berries: Comparison of antioxidant activity and identification of bioactive compounds. The Journal of Supercritical Fluids, 113, 1–9. https://doi.org/10.1016/j.supflu.2015.09.006
Pojer, E., Mattivi, F., Johnson, D., & Stockley, C. S. (2013). The case for anthocyanin consumption to promote human health: A Review. Comprehensive Reviews in Food Science and Food Safety, 12(2006), 483–508. https://doi.org/10.1111/1541-4337.12024
Poole, C. F. (2020). Chapter 1 - Milestones in the Development of liquid-phase extraction techniques. In C. F. Poole (Ed.), Liquid-Phase Extraction (pp. 1–44). Elsevier. https://doi.org/10.1016/B978-0-12-816911-7.00001-3
Puértolas, E., López, N., Saldaña, G., Álvarez, I., & Raso, J. (2010). Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale. Journal of Food Engineering, 98, 120–125. https://doi.org/10.1016/j.jfoodeng.2009.12.017
Puri, M., Sharma, D., & Barrow, C. J. (2012). Enzyme-assisted extraction of bioactives from plants. Trends in biotechnology, 30(1), 37–44. https://doi.org/10.1016/j.tibtech.2011.06.014
Ranveer, R. C., Patil, S. N., & Sahoo, A. K. (2013). Effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food and Bioproducts Processing, 91(4), 370–375. https://doi.org/10.1016/j.fbp.2013.01.006
Rasheed, A., Fathima, R., & Azeez, A. (2019). A Review on natural antioxidants. In Traditional and Complementary Medicine. Intech Open. https://doi.org/10.5772/intechopen.82636
Riccioni, G., Speranza, L., Pesce, M., Cusenza, S., D'Orazio, N., & Glade, M. J. (2012). Novel phytonutrient contributors to antioxidant protection against cardiovascular disease. Nutrition and cancer, 28, 605–610. https://doi.org/10.1016/j.nut.2011.11.028
Richter, B. E., Jones, B. A., Ezzell, J. L., Porter, N. L., Avdalovic, N., & Pohl, C. (1996). Accelerated solvent extraction: A technique for sample preparation. Analytical Chemistry, 68(6), 1033–1039. https://doi.org/10.1021/ac9508199
Roddy, E. (2014). Epidemiology of Gout. Rheumatic Disease Clinics of North America, 40, 155–175. https://doi.org/10.1016/j.rdc.2014.01.001
Routray, W., & Orsat, V. (2012). microwave-assisted extraction of flavonoids: A review. Food and Bioprocess Technology, 5, 409–424. https://doi.org/10.1007/s11947-011-0573-z
Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512-531. https://doi.org/10.1111/1541-4337.12330
Sanagi, M. M., See, H. H., Ibrahim, W. A. W., & Naim, A. A. (2005). Determination of carotene, tocopherols and tocotrienols in residue oil from palm pressed fiber using pressurized liquid extraction-normal phase liquid chromatography. Analytica Chimica Acta, 538(1–2), 71–76. https://doi.org/10.1016/j.aca.2005.02.028
Santos-buelga, C., Mateus, N., & Freitas, V. D. (2014). Anthocyanins. Plant pigments and beyond. Journal of Agricultural and Food Chemistry, 62(29), 6879–6884. https://doi.org/10.1021/jf501950s
Santos, E. O. L., Kabeya, L. M., Figueiredo-rinhel, A. S. G., Marchi, L. F., Andrade, M. F., Piatesi, F., Paoliello-paschoalato, A. B., Elisa, A., Azzolini, C. S., & Lucisano-valim, Y. M. (2014). Flavonols modulate the effector functions of healthy individuals' immune complex-stimulated neutrophils: A therapeutic perspective for rheumatoid arthritis. International Immunopharmacology 21, 102–111. https://doi.org/10.1016/j.intimp.2014.04.014
Saravana, P. S., Cho, Y. J., Park, Y. B., Woo, H. C., & Chun, B. S. (2016). Structural, antioxidant, and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction. Carbohydrate Polymers, 153, 518–525. https://doi.org/10.1016/j.carbpol.2016.08.014
Segovia, F. J., Luengo, E., Corral-Pérez, J. J., Raso, J., & Almajano, M. P. (2015). Improvements in the aqueous extraction of polyphenols from borage (Borago officinalis L.) leaves by pulsed electric fields: Pulsed electric fields (PEF) applications. Industrial Crops and Products, 65, 390–396. https://doi.org/10.1016/j.indcrop.2014.11.010
Setyaningsih, W., Saputro, I. E., Palma, M., & Barroso, C. G. (2016). Pressurized liquid extraction of phenolic compounds from rice (Oryza sativa) grains. Food Chemistry, 192, 452–459. https://doi.org/10.1016/j.foodchem.2015.06.102
Selvamuthukumaran, M., & Shi, J. (2017). Recent advances in extraction of antioxidants from plant by-products processing industries. Food Quality and Safety, 1, 61–81. https://doi.org/10.1093/fqs/fyx004
Shahkar, E., Yun, H., Kim, D.-j., Kim, S.-k., Ik, B., & Bai, S. C. (2015). Effects of dietary vitamin C levels on tissue ascorbic acid concentration, hematology, non-specific immune response and gonad histology in broodstock Japanese eel, Anguilla japonica. Aquaculture, 438, 115–121. https://doi.org/10.1016/j.aquaculture.2015.01.001
Shang, Y. F., Kim, S. M., & Um, B.-H. (2014). Optimisation of pressurised liquid extraction of antioxidants from black bamboo leaves. Food Chemistry, 154, 164–170. https://doi.org/10.1016/j.foodchem.2013.12.050
Sharmila, G., Nikitha, V. S., Ilaiyarasi, S., Dhivya, K., Rajasekar, V., Kumar, N. M., Muthukumaran, K., & Muthukumaran, C. (2016). Ultrasound assisted extraction of total phenolics from Cassia auriculata leaves and evaluation of its antioxidant activities. Industrial Crops and Products, 84, 13–21. https://doi.org/10.1016/j.indcrop.2016.01.010
Shu, Y. Y., Ko, M. Y., & Chang, Y. S. (2003). Microwave-assisted extraction of ginsenosides from ginseng root. Microchemical Journal, 74(2), 131–139. https://doi.org/10.1016/S0026-265X(02)00180-7
Silva, L. V., Nelson, D. L., Drummond, M. F. B., Dufossé, L., & Glória, M. B. A. (2005). Comparison of hydrodistillation methods for the deodorization of turmeric. Food Research International, 38, 1087–1096. https://doi.org/10.1016/j.foodres.2005.02.025
Sikora, E., Cieslik, E., & Topolska, K. (2016). The sources of natural antioxidants. Acta Scientiarum Polonorum, 7(1), 5–17.
Sitholé, B., Shirin, S., & Ambayec, B. (2010). Analysis and fate of lipophilic extractives in sulphite pulps. Journal of Wood Chemistry and Technology, 30(1), 31–47. https://doi.org/10.1080/02773810903370404
Talmaciu, I., Volf, I., & Popa, V. I. (2015). A comparative analysis of the green techniques applied for polyphenols extraction from bioresources. Chemistry and Biodiversity, 12, 1635-1651. https://doi.org/10.1002/cbdv.201400415
Tatke, P. A., & Jaiswal, Y. S. (2011). An overview of microwave assisted extraction and its applications in herbal drug research. Research Journal of Medicinal Plant, 5, 21–31. https://doi.org/10.3923/RJMP.2011.21.31
Teh, S.-s., Niven, B. E., Bekhit, A. E.-d. A., Carne, A., & Birch, E. J. (2015). Microwave and pulsed electric field assisted extractions of polyphenols from defatted canola seed cake. International Journal of Food Science & Technology, 50, 1109–1115. https://doi.org/10.1111/ijfs.12749
Thirugnanasambandham, K., & Sivakumar, V. (2017). Microwave assisted extraction process of betalain from dragon fruit and its antioxidant activities. Journal of the Saudi Society of Agricultural Sciences, 16(1), 41–48. https://doi.org/10.1016/j.jssas.2015.02.001
Toepfl, S., Mathys, A., Heinz, V., & Knorr, D. (2006). Review: Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Reviews International, 22, 405–423. https://doi.org/10.1080/87559120600865164
Tomás-Barberán, F. A., & Andrés-Lacueva, C. (2012). Polyphenols and health: current state and progress. Journal of Agricultural and Food Chemistry, 60(36), 8773–8775. https://doi.org/10.1021/jf300671j
Tomaz, I., Maslov, L., Stupić, D., Preiner, D., Ašperger, D., & Kontić, J. K. (2016). Recovery of flavonoids from grape skins by enzyme-assisted extraction. Separation Science and Technology, 51(2), 255–268. https://doi.org/10.1080/01496395.2015.1085881
Tsuda, T. (2012). Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Molecular Nutrition & Food Research, 56(1), 159–170. https://doi.org/10.1002/mnfr.201100526
Vaisi- Raygani, A., Rahimi, Z., Noroozian, M., & Pourmotabbed, A. (2007). Enzymatic and non- enzymatic antioxidant defense in Alzheimer’s disease. Acta Medica Iranica, 45(4), 271-276.
Vankar, P. S. (2004). Essential oils and fragrances from natural sources. Resonance, 9(4), 30–41. https://doi.org/10.1007/BF02834854
Vorobiev, E., & Lebovka, N. I. (2006). extraction of intercellular components by pulsed electric fields. In J. Raso & V. Heinz (Eds.), Pulsed Electric Fields Technology for the Food Industry: Fundamentals and Applications (pp. 153-193). Springer US. https://doi.org/10.1007/978-0-387-31122-7_6
Wang, F., Li, Y., Zhang, Y. J., Zhou, Y., Li, S., & Li, H. B. (2016). Natural products for the prevention and treatment of hangover and alcohol use disorder. Molecules, 21(1), 64. https://doi.org/10.3390/molecules21010064
Xu, D.-p., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., & Zhang, J.-j. (2017). Natural antioxidants in foods and medicinal plants: Extraction, Assessment and Resources. International Journal of Molecular Sciences, 18, 20–31. https://doi.org/10.3390/ijms18010096
Yamagata, K., & Tagami, M. (2015). Chapter 41 - Prevention of ischemia-induced neuronal apoptosis by vitamin E in stroke-prone spontaneously hypertensive rats: cellular mechanisms of antioxidants. In R. R. Watson & V. R. Preedy (Eds.), Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease (pp. 399–402). Academic Press. https://doi.org/10.1016/B978-0-12-411462-3.00041-2
Yousef, M. I. (2010). Vitamin E modulates reproductive toxicity of pyrethroid lambda-cyhalothrin in male rabbits. Food and Chemical Toxicology, 48(5), 1152–1159. https://doi.org/10.1016/j.fct.2010.02.002
Zaghdoudi, K., Framboisier, X., Frochot, C., Vanderesse, R., Barth, D., Kalthoum-Cherif, J., Blanchard, F., & Guiavarc'h, Y. (2016). Response surface methodology applied to supercritical fluid extraction (SFE) of carotenoids from Persimmon (Diospyros kaki L.). Food Chemistry, 208, 209–219. https://doi.org/10.1016/j.foodchem.2016.03.104
Zhang, H. F., Yang, X. H., & Wang, Y. (2011). Microwave assisted extraction of secondary metabolites from plants : Current status and future directions. Trends in Food Science & Technology, 22, 672–688. https://doi.org/10.1016/j.tifs.2011.07.003
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.