Development and potential applications of gelatine, honey, and cellulose electrospun nanofibres as a green polymer
DOI:
https://doi.org/10.24191/mjcet.v4i2.13333Keywords:
Nanofibres, Electrospinning, Green polymers, Cellulose, HoneyAbstract
Nanofibres have emerged as a brilliant technology to be applied in various areas due to their excellent properties that include having a great flexibility, prominent specific surface area and structural strength. Electrospinning is one of the most effective and favourable methods to fabricate nanofibres mainly because electrospun nanofibres have been demonstrated to possess small pore sizes, large specific surface area, and can be produced with different functions to fill the need of various applications in industries. Due to their remarkable properties, electrospun nanofibres have been proven to be suitable for applications in food packaging, medical, pharmaceutical and even in tissue engineering. Currently, there have been numerous research utilising both electrospun synthetic and natural polymers. Natural or green polymers are considered more favourable due to their biodegradable properties and potential biocompatibility. Therefore, there has been a shift to include more research regarding these green polymers. Green polymers can source from both plant polysaccharides and animal protein. Considering the different characteristics of synthetic polymers, the processing and fabrication methods may differ and must be adjusted accordingly. To well summarise the development of these green polymer nanofibres, we review fabrication methods of gelatine, honey and cellulose-based nanofibre and their potential applications in industries. There are indeed numerous promising areas for the usage of these green polymers which are based on their splendid individual properties especially when combined to form nanofibres via electrospinning. We hope this will promote continuous research and development for the applications in various industries including but not limited to tissue engineering, biomedical, food and pharmaceutical industries.
References
Abou, S. S., Abdellatif, A., & Azzazy, H. M. E. (2020). Fabrication of pomegranate/honey nanofibers for use as antibacterial wound dressings. Wound Medicine, 28, 100181. https://doi.org/10.1016/j.wndm.2020.100181
Absar, S., Khan, M., Edwards, K., & Neumann, J. (2015). Investigation of synthesis and processing of cellulose, cellulose acetate, and poly (ethylene oxide) nanofibers incorporating anti-cancer/tumour drug cis-diammineplatinum (II) dichloride using electrospinning techniques. Journal of Polymer Engineering, 35(9), 867–878. https://doi.org/10.1515/polyeng-2015-0057
Aliakbarshirazi, S., & Talebian, A. (2017). Electrospun gelatine nanofibrous scaffolds for cartilage tissue engineering. Materials Today: Proceedings, 4(7), 7059–7064. https://doi.org/10.1016/j.matpr.2017.07.038
Ardila, N., Medina, N., Arkoun, M., Heuzey, M. C., Ajji, A., & Panchal, C. J. (2016). Chitosan–bacterial nanocellulose nanofibrous structures for potential wound dressing applications. Cellulose, 23(5), 3089–3104. https://doi.org/10.1007/s10570-016-1022-y
Bagde, A. B., Sawant, R. S., Bingare, S. D., Sawai, R. V., & Nikumbh, M. B. (2013). Therapeutic and nutritional values of honey (Madhu). International Research Journal of Pharmacy, 4(3), 19–22. https://doi.org/10.7897/2230-8407.04305
Bazmandeh, A. Z., Mirzaei, E., Fadaie, M., Shirian, S., & Ghasemi, Y. (2020). Dual spinneret electrospun nanofibrous/gel structure of chitosan-gelatine/chitosan-hyaluronic acid as a wound dressing: In-vitro and in-vivo studies. International Journal of Biological Macromolecules, 162, 359–373. https://doi.org/10.1016/j.ijbiomac.2020.06.181
Bhat, A. H., Dasan, Y. K., Khan, I., Soleimani, H., & Usmani, A. (2017). Application of nanocrystalline cellulose: Processing and biomedical applications. In Cellulose-reinforced nanofibre composites (215–240). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100957-4.00009-7
Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: a fascinating fibre fabrication technique. Biotechnology Advances, 28(3), 325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004
Bhute, M. V., & Kondawar, S. B. (2019). Electrospun poly (vinylidene fluoride)/cellulose acetate/AgTiO2 nanofibers polymer electrolyte membrane for lithium-ion battery. Solid State Ionics, 333, 38–44. https://doi.org/10.1016/j.ssi.2019.01.019
Çanga, E. M., & Dudak, F. C. (2019). Characterization of cellulose acetate/gum Arabic fibres loaded with extract of Viburnum opulus L. fruit. LWT-Food Science & Technology, 110, 247–254. https://doi.org/10.1016/j.lwt.2019.04.085
Chattopadhyay, S., Hatton, T. A., & Rutledge, G. C. (2016). Aerosol filtration using electrospun cellulose acetate fibres. Journal of Materials Science, 51(1), 204–217. https://doi.org/10.1007/s10853-015-9286-4
Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibres. Journal of Electrostatics, 35(2-3), 151–160. https://doi.org/10.1016/0304-3886(95)00041-8
Feng, B., Wang, S., Hu, D., Fu, W., Wu, J., Hong, H., Domian I. J., Li F., & Liu, J. (2019). Bioresorbable electrospun gelatine/polycaprolactone nanofibrous membrane as a barrier to prevent cardiac postoperative adhesion. Acta Biomaterialia, 83, 211–220. https://doi.org/10.1016/j.actbio.2018.10.022
Haider, A., Haider, S., & Kang, I. K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015
Hasan, M. M., Alam, A. M., & Nayem, K. A. (2014). Application of electrospinning techniques for the production of tissue engineering scaffolds: A review. European Scientific Journal, 10(15). 1857–7881. https://doi.org/10.19044/esj.2014.v10n15p%p
Heidari, M., Bahrami, S. H., Ranjbar-Mohammadi, M., & Milan, P. B. (2019). Smart electrospun nanofibers containing PCL/gelatine/graphene oxide for application in nerve tissue engineering. Materials science and Engineering: C, 103, 109768. https://doi.org/10.1016/j.msec.2019.109768
Ibrahim, H. M., & Klingner, A. (2020). A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing, 90, 106647. https://doi.org/10.1016/j.polymertesting.2020.106647
Inal, M., & Mülazımoğlu, G. (2019). Production and characterization of bactericidal wound dressing material based on gelatine nanofibre. International Journal of Biological Macromolecules, 137, 392–404. https://doi.org/10.1016/j.ijbiomac.2019.06.119
Jalaja, K., Sreehari, V. S., Kumar, P. A., & Nirmala, R. J. (2016). Graphene oxide decorated electrospun gelatin nanofibers: Fabrication, properties, and applications. Materials Science and Engineering: C, 64, 11–19. https://doi.org/10.1016/j.msec.2016.03.036
Ji, L., Qiao, W., Zhang, Y., Wu, H., Miao, S., Cheng, Z., Gong Q., Liang J., & Zhu, A. (2017). A gelatin composite scaffold strengthened by drug-loaded halloysite nanotubes. Materials Science and Engineering: C, 78, 362–369. https://doi.org/10.1016/j.msec.2017.04.070
Kalantari, K., Afifi, A. M., Jahangirian, H., & Webster, T. J. (2019). Biomedical applications of chitosan electrospun nanofibers as a green polymer–Review. Carbohydrate polymers, 207, 588–600. https://doi.org/10.1016/j.carbpol.2018.12.011
Khan, M. Q., Lee, H., Khatri, Z., Kharaghani, D., Khatri, M., Ishikawa, T., Im, S.S., & Kim, I. S. (2017). Fabrication and characterization of nanofibers of honey/poly (1, 4-cyclohexane dimethylene isosorbide trephthalate) by electrospinning. Materials Science and Engineering: C, 81, 247–251. https://doi.org/10.1016/j.msec.2017.08.011
Khoshnevisan, K., Maleki, H., Samadian, H., Shahsavari, S., Sarrafzadeh, M. H., Larijani, B., Dorkoosh F. A., Haghpanah V., & Khorramizadeh, M. R. (2018). Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydrate Polymers, 198, 131–141. https://doi.org/10.1016/j.carbpol.2018.06.072
Kotatha, D., Hirata, M., Ogino, M., Uchida, S., Ishikawa, M., Furuike, T., & Tamura, H. (2019). Preparation and characterization of electrospun gelatin nanofibers for use as nonaqueous electrolyte in electric double-layer capacitor. Journal of Nanotechnology, 2019, 1–11. https://doi.org/10.1155/2019/2501039
Kwak, H. W., Shin, M., Lee, J. Y., Yun, H., Song, D. W., Yang, Y., Shin, B. S., Park, Y. H., & Lee, K. H. (2017). Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning. International Journal of Biological Macromolecules, 102, 1092–1103. https://doi.org/10.1016/j.ijbiomac.2017.04.087
Law, J. X., Liau, L. L., Saim, A., Yang, Y., & Idrus, R. (2017). Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Engineering and Regenerative Medicine, 14(6), 699–718. https://doi.org/10.1007/s13770-017-0075-9
Lin, Y., Yao, Y., Yang, X., Wei, N., Li, X., Gong, P., Li, R., & Wu, D. (2008). Preparation of poly (ether sulfone) nanofibers by gas‐jet/electrospinning. Journal of Applied Polymer Science, 107(2), 909–917. https://doi.org/10.1002/app.26445
Lv, D., Zhu, M., Jiang, Z., Jiang, S., Zhang, Q., Xiong, R., & Huang, C. (2018). Green electrospun nanofibers and their application in air filtration. Macromolecular Materials and Engineering, 303(12), 1800336. https://doi.org/10.1002/mame.201800336
Mehrabi, F., Shamspur, T., Mostafavi, A., Saljooqi, A., & Fathirad, F. (2017). Synthesis of cellulose acetate nanofibers and its application in the release of some drugs. Nanomedicine Research Journal, 2(3), 199–207. https://doi.org/10.22034/NMRJ.2017.03.008
Minden-Birkenmaier, B. A., Neuhalfen, R. M., Janowiak, B. E., & Sell, S. A. (2015). Preliminary investigation and characterization of electrospun polycaprolactone and Manuka honey scaffolds for dermal repair. Journal of Engineered Fibers and Fabrics, 10(4), 155892501501000406.https://doi.org/10.1177/155892501501000406
Pierschbacher, M. D., & Ruoslahti, E. (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 309(5963), 30-33. https://doi.org/10.1038/309030a0
Patil, J. V., Mali, S. S., Kamble, A. S., Hong, C. K., Kim, J. H., & Patil, P. S. (2017). Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Applied Surface Science, 423, 641–674. https://doi.org/10.1016/j.apsusc.2017.06.116
Pillay, V., Dott, C., Choonara, Y. E., Tyagi, C., Tomar, L., Kumar, P., du Toit, L. C., & Ndesendo, V. M. (2013). A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/789289
Qasim, S. B., Zafar, M. S., Najeeb, S., Khurshid, Z., Shah, A. H., Husain, S., & Rehman, I. U. (2018). Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. International journal of molecular sciences, 19(2), 407. https://doi.org/10.3390/ijms19020407
Ren, K., Wang, Y., Sun, T., Yue, W., & Zhang, H. (2017). Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Materials Science and Engineering: C, 78, 324–332. https://doi.org/10.1016/j.msec.2017.04.084
Rodoplu, D., & Mutlu, M. (2012). Effects of electrospinning setup and process parameters on nanofiber morphology intended for the modification of quartz crystal microbalance surfaces. Journal of Engineered Fibers and Fabrics, 7(2), 155892501200700217. https://doi.org/10.1177/155892501200700217
Sabra, S., Ragab, D. M., Agwa, M. M., & Rohani, S. (2020). Recent advances in electrospun nanofibers for some biomedical applications. European Journal of Pharmaceutical Sciences, 144, 105224. https://doi.org/10.1016/j.ejps.2020.105224
Sarhan, W. A., Azzazy, H. M., & El-Sherbiny, I. M. (2016). Honey/chitosan nanofiber wound dressing enriched with Allium sativum and Cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS Applied Materials & Interfaces, 8(10), 6379–6390. https://doi.org/10.1021/acsami.6b00739
Scagnelli, A. M. (2016). Therapeutic review: Manuka honey. Journal of Exotic Pet Medicine, 2(25), 168–171. https://doi.org/10.1053/j.jepm.2016.03.007
Shalumon, K. T., Deepthi, S., Anupama, M. S., Nair, S. V., Jayakumar, R., & Chennazhi, K. P. (2015). Fabrication of poly (l-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. International Journal of Biological Macromolecules, 72, 1048–1055. https://doi.org/10.1016/j.ijbiomac.2014.09.058
Sill, T. J., & Von Recum, H. A. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989–2006. https://doi.org/10.1016/j.biomaterials.2008.01.011
Simões, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonça, A. G., & Correia, I. J. (2018). Recent advances on antimicrobial wound dressing: A review. European Journal of Pharmaceutics and Biopharmaceutics, 127, 130–141. https://doi.org/10.1016/j.ejpb.2018.02.022
Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557–569. https://doi.org/10.1002/app.21481
Tang, Y., Lan, X., Liang, C., Zhong, Z., Xie, R., Zhou, Y., Miao, X., Wang, H., & Wang, W. (2019). Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydrate Polymers, 219, 113–120. https://doi.org/10.1016/j.carbpol.2019.05.004
Teixeira, M. A., Paiva, M. C., Amorim, M. T. P., & Felgueiras, H. P. (2020). Electrospun nanocomposites containing cellulose, and its derivatives modified with specialized biomolecules for an enhanced wound healing. Nanomaterials, 10(3), 557. https://doi.org/10.3390/nano10030557
Theron, S. A., Yarin, A. L., Zussman, E. & Kroll, E. (2005). Multiple jets in electrospinning: experiment and modeling. Polymer, 46(9), 2889–2899. https://doi.org/10.1016/j.polymer.2005.01.054.
Ullah, A., Ullah, S., Khan, M. Q., Hashmi, M., Nam, P. D., Kato, Y., Tamada, Y., & Kim, I. S. (2020). Manuka honey incorporated cellulose acetate nanofibrous mats: Fabrication and in vitro evaluation as a potential wound dressing. International Journal of Biological Macromolecules, 155, 479–489. https://doi.org/10.1016/j.ijbiomac.2020.03.237
Wang, C., Wang, J., Zeng, L., Qiao, Z., Liu, X., Liu, H., Zhang, J., & Ding, J. (2019). Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules, 24(5), 834. https://doi.org/10.3390/molecules24050834
Wang, D., Yue, Y., Wang, Q., Cheng, W., & Han, G. (2020). Preparation of cellulose acetate-polyacrylonitrile composite nanofibers by multi-fluid mixing electrospinning method: Morphology, wettability, and mechanical properties. Applied Surface Science, 510, 145462. https://doi.org/10.1016/j.apsusc.2020.145462
Wsoo, M. A., Shahir, S., Bohari, S. P. M., Nayan, N. H. M., & Abd Razak, S. I. (2020). A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective. Carbohydrate Research, 491, 107978. https://doi.org/10.1016/j.carres.2020.107978
Wu, S. C., Chang, W. H., Dong, G. C., Chen, K. Y., Chen, Y. S., & Yao, C. H. (2011). Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds. Journal of Bioactive and Compatible Polymers, 26(6), 565–577. https://doi.org/10.1177/0883911511423563
Yadav, S., Illa, M. P., Rastogi, T., & Sharma, C. S. (2016). High absorbency cellulose acetate electrospun nanofibers for feminine hygiene application. Applied Materials Today, 4, 62–70. https://doi.org/10.1016/j.apmt.2016.07.002
Zhang, W., He, Z., Han, Y., Jiang, Q., Zhan, C., Zhang, K., Li, Z. & Zhang, R. (2020). Structural design and environmental applications of electrospun nanofibers. Composites Part A: Applied Science and Manufacturing, 137, 106009. https://doi.org/10.1016/j.compositesa.2020.106009
Zhu, M., Han, J., Wang, F., Shao, W., Xiong, R., Zhang, Q., Pan, H., Yang, Y., Samal, S. K., Zhang, F., & Huang, C. (2017). Electrospun nanofibers membranes for effective air filtration. Macromolecular Materials and Engineering, 302(1), 1600353. https://doi.org/10.1002/mame.201600353
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.