Essential oils encapsulation performance evaluation: A review on encapsulation parameters
DOI:
https://doi.org/10.24191/mjcet.v4i2.14481Keywords:
Encapsulation Efficiency, Encapsulation Yield, Microencapsulation, Controlled Release, Essential OilsAbstract
Application of essential oils (EOs) in food preservation and products is not a virgin trend owing to its bio-functional properties such as antioxidants, antimicrobials, medicinal values, and aromatic functionalities. However, EOs are prone to degrade upon exposure to different environmental surroundings, eventually losing their bio-functional activities and limits their potential applications. Hence, encapsulation process is introduced to overcome this issue. In order, to evaluate encapsulation process, there are several key indicators, known as encapsulation parameters, that reflects the performance of encapsulation process and quality of encapsulation products (encapsulates) namely encapsulation efficiency, encapsulation yield, payload/loading capacity, and surface loading. Since some terms are used interchangeably across literatures, problems arise when it comes to compare these parameters among published works as there is no specific guideline or specific term to classify these parameters. Therefore, this paper aims to help researchers understand an insight of the definition of encapsulation parameters used in evaluating performance of encapsulation process and encapsulation products of EOs. Commonly used evaluation techniques as well as some recommendations for considerations are also highlighted. Different calculation formulae used in evaluating encapsulation performance would have significant difference to the encapsulation parameters values.
References
Ardiansyah Rukmana, R. A. F., Warsito, W., & Rahman, M. F. (2017). Microencapsulation of Kaffir Lime Oil (citrus hystrix d. c.) from Peels and Twigs Oil Fraction and its Activity as Antioxidant. Proceedings of International Conference of Essential Oil (ICEO 2017), 112–118.
Bakry, A. M., Huang, J., Zhai, Y., & Huang, Q. (2019). Myofibrillar protein with κ- or λ-carrageenans as novel shell materials for microencapsulation of tuna oil through complex coacervation. Food Hydrocolloids, 96, 43–53. https://doi.org/10.1016/j.foodhyd.2019.04.070
Borompichaichartkul, C., Srzednicki, G., Piriyapunsakul, S., Panket, W., Zhao, J., & Adamiec, J. (2012). Microencapsulation of kaffir lime oil and its functional properties. Drying Technology, 30(9), 914–920. https://doi.org/10.1080/07373937.2012.666777
Bastos, L. P. H., dos Santos, C. H. C., de Carvalho, M. G., & Garcia-Rojas, E. E. (2020). Encapsulation of the black pepper (Piper nigrum L.) essential oil by lactoferrin-sodium alginate complex coacervates: Structural characterization and simulated gastrointestinal conditions. Food Chemistry, 316(January), 126345. https://doi.org/10.1016/j.foodchem.2020.126345
Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451. https://doi.org/10.1016/j.jfoodeng.2012.03.033
Chung, S. K., Seo, J. Y., Lim, J. H., Park, H. H., Yea, M. J., & Park, H. J. (2013). Microencapsulation of essential oil for insect repellent in food packaging system. Journal of Food Science, 78(5), 1–6. https://doi.org/10.1111/1750-3841.12111
Cortés-Camargo, S., Acuña-Avila, P. E., Rodríguez-Huezo, M. E., Román-Guerrero, A., Varela-Guerrero, V., & Pérez-Alonso, C. (2019). Effect of chia mucilage addition on oxidation and release kinetics of lemon essential oil microencapsulated using mesquite gum – Chia mucilage mixtures. Food Research International, 116, 1010–1019. https://doi.org/10.1016/j.foodres.2018.09.040
da Silva Soares, B., Siqueira, R. P., de Carvalho, M. G., Vicente, J., & Garcia-Rojas, E. E. (2019). Microencapsulation of sacha inchi oil (Plukenetia volubilis L.) using complex coacervation: Formation and structural characterization. Food Chemistry, 298(February), 125045. https://doi.org/10.1016/j.foodchem.2019.125045
De Matos, E. F., Scopel, B. S., & Dettmer, A. (2018). Citronella essential oil microencapsulation by complex coacervation with leather waste gelatin and sodium alginate. Journal of Environmental Chemical Engineering, 6(2), 1989–1994. https://doi.org/10.1016/j.jece.2018.03.002
Deka, C., Deka, D., Bora, M. M., Jha, D. K., & Kakati, D. K. (2016). Synthesis of peppermint oil-loaded chitosan/alginate polyelectrolyte complexes and study of their antibacterial activity. Journal of Drug Delivery Science and Technology, 35, 314–322. https://doi.org/10.1016/j.jddst.2016.08.007
Devi, N., & Maji, T. K. (2011). Study of complex coacervation of gelatin a with sodium carboxymethyl cellulose: Microencapsulation of neem (Azadirachta Indica A. Juss.) seed oil (NSO). International Journal of Polymeric Materials and Polymeric Biomaterials, 60(13), 1091–1105. https://doi.org/10.1080/00914037.2011.553851
Dong, Z. J., Touré, A., Jia, C. S., Zhang, X. M., & Xu, S. Y. (2007). Effect of processing parameters on the formation of spherical multinuclear microcapsules encapsulating peppermint oil by coacervation. Journal of Microencapsulation, 24(7), 634–646. https://doi.org/10.1080/02652040701500632
Dong, Z., Ma, Y., Hayat, K., Jia, C., Xia, S., & Zhang, X. (2011). Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. Journal of Food Engineering, 104(3), 455–460. https://doi.org/10.1016/j.jfoodeng.2011.01.011
Dubey, V., Mohan, P., Dangi, J. S., & Kesavan, K. (2020). Brinzolamide loaded chitosan-pectin mucoadhesive nanocapsules for management of glaucoma: Formulation, characterization and pharmacodynamic study. International Journal of Biological Macromolecules, 152, 1224–1232. https://doi.org/10.1016/j.ijbiomac.2019.10.219
Fraj, J., Petrović, L., Đekić, L., Budinčić, J. M., Bučko, S., & Katona, J. (2021). Encapsulation and release of vitamin C in double W/O/W emulsions followed by complex coacervation in gelatin-sodium caseinate system. Journal of Food Engineering, 292(May 2020), 110353. https://doi.org/10.1016/j.jfoodeng.2020.110353
Girardi, N. S., García, D., Passone, M. A., Nesci, A., & Etcheverry, M. (2017). Microencapsulation of Lippia turbinata essential oil and its impact on peanut seed quality preservation. International Biodeterioration and Biodegradation, 116, 227–233. https://doi.org/10.1016/j.ibiod.2016.11.003
Hasani, S., Ojagh, S. M., & Ghorbani, M. (2018). Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: Study on its physical and structural characteristics. International Journal of Biological Macromolecules, 115, 143–151. https://doi.org/10.1016/j.ijbiomac.2018.04.038
Hsieh, W. C., Chang, C. P., & Gao, Y. L. (2006). Controlled release properties of Chitosan encapsulated volatile citronella oil microcapsules by thermal treatments. Colloids and Surfaces B: Biointerfaces, 53(2), 209–214. https://doi.org/10.1016/j.colsurfb.2006.09.008
Hussain, M. R., Iman, M., & Maji, T. K. (2013). Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and chitosan-gelatin complex microcapsules. International Journal of Advanced Engineering Applications, 6(4), 4–12. https://doi.org/10.1152/jn.00961.2010
Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y., Cheng, Y., Qian, H., & Yao, W. (2019). Application of essential oil as a sustained release preparation in food packaging. Trends in Food Science and Technology, 92(1800), 22–32. https://doi.org/10.1016/j.tifs.2019.08.005
Jun-xia, X., Hai-yan, Y., & Jian, Y. (2011). Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chemistry, 125(4), 1267–1272. https://doi.org/10.1016/j.foodchem.2010.10.063
Kavousi, H. R., Fathi, M., & Goli, S. A. H. (2018). Novel cress seed mucilage and sodium caseinate microparticles for encapsulation of curcumin: An approach for controlled release. Food and Bioproducts Processing, 110, 126–135. https://doi.org/10.1016/j.fbp.2018.05.004
Khoshakhlagh, K., Koocheki, A., Mohebbi, M., & Allafchian, A. (2017). Development and characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of D-limonene. Journal of Colloid and Interface Science (490). 562–575. https://doi.org/10.1016/j.jcis.2016.11.067
Li, L., Au, W., Hua, T., Zhao, D., & Wong, K. (2013). Improvement in antibacterial activity of moxa oil containing gelatin-Arabic gum microcapsules. Textile Research Journal, 83(12), 1236–1241. https://doi.org/10.1177/0040517512467059
Maji, T. K., Baruah, I., Dube, S., & Hussain, M. R. (2007). Microencapsulation of Zanthoxylum limonella oil (ZLO) in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresource Technology, 98(4), 840–844. https://doi.org/10.1016/j.biortech.2006.03.005
Maji, T. K., & Hussain, M. R. (2009). Microencapsulation of Zanthoxylum limonella oil (ZLO) in genipin crosslinked chitosan-gelatin complex for mosquito repellent application. Journal of Applied Polymer Science, 111, 779–785. https://doi.org/10.1002/app.29001
Merodio, M., Arnedo, A., Renedo, M. J., & Irache, J. M. (2001). Ganciclovir-loaded albumin nanoparticles: Characterization and in vitro release properties. European Journal of Pharmaceutical Sciences, 12(3), 251–259. https://doi.org/10.1016/S0928-0987(00)00169-X
Muhoza, B., Xia, S., Cai, J., Zhang, X., Duhoranimana, E., & Su, J. (2019). Gelatin and pectin complex coacervates as carriers for cinnamaldehyde: Effect of pectin esterification degree on coacervate formation and enhanced thermal stability. Food Hydrocolloids, 87, 712–722. https://doi.org/10.1016/j.foodhyd.2018.08.051
Ngamekaue, N., & Chitprasert, P. (2019). Effects of beeswax-carboxymethyl cellulose composite coating on shelf-life stability and intestinal delivery of holy basil essential oil-loaded gelatin microcapsules. International Journal of Biological Macromolecules, 135, 1088–1097. https://doi.org/10.1016/j.ijbiomac.2019.06.002
Nori, M. P., Favaro-Trindade, C. S., Matias de Alencar, S., Thomazini, M., de Camargo Balieiro, J. C., & Contreras Castillo, C. J. (2011). Microencapsulation of propolis extract by complex coacervation. LWT - Food Science and Technology, 44(2), 429–435. https://doi.org/10.1016/j.lwt.2010.09.010
Prata, A. S., Zanin, M. H. A., Ré, M. I., & Grosso, C. R. F. (2008). Release properties of chemical and enzymatic crosslinked gelatin-gum Arabic microparticles containing a fluorescent probe plus vetiver essential oil. Colloids and Surfaces B: Biointerfaces, 67(2), 171–178. https://doi.org/10.1016/j.colsurfb.2008.08.014
Rosli, N. A., Hasham, R., & Aziz, A. A. (2018). Design and physicochemical evaluation of lipid encapsulated Zingiber zerumbet oil by d-optimal mixture design. Jurnal Teknologi, 80(3), 105–113. https://doi.org/10.11113/jt.v80.11268
Rungwasantisuk, A., & Raibhu, S. (2020). Application of encapsulating lavender essential oil in gelatin/gum Arabic complex coacervate and varnish screen-printing in making fragrant gift-wrapping paper. Progress in Organic Coatings, 149, 105924. https://doi.org/10.1016/j.porgcoat.2020.105924
Rutz, J. K., Borges, C. D., Zambiazi, R. C., Crizel-Cardozo, M. M., Kuck, L. S., & Noreña, C. P. Z. (2017). Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chemistry, 220, 59–66. https://doi.org/10.1016/j.foodchem.2016.09.194
Seow, Y. X., Yeo, C. R., Chung, H. L., & Yuk, H. G. (2014). Plant essential oils as active antimicrobial agents. Critical Reviews in Food Science and Nutrition, 54(5), 625–644. https://doi.org/10.1080/10408398.2011.599504
Shetta, A., Kegere, J., & Mamdouh, W. (2019). Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant, and antibacterial activities. International Journal of Biological Macromolecules, 126, 731–742.
https://doi.org/10.1016/j.ijbiomac.2018.12.161
Shi, L., Beamer, S. K., Yang, H., & Jaczynski, J. (2018). Micro-emulsification/encapsulation of krill oil by complex coacervation with krill protein isolated using isoelectric solubilization/precipitation. Food Chemistry, 244(March 2017), 284–291. https://doi.org/10.1016/j.foodchem.2017.10.050
Siow, L., & Ong, C. (2012). Effect of pH on garlic oil encapsulation by complex coacervation. Journal of Food Processing & Technology, 04(01), 1–5. https://doi.org/10.4172/2157-7110.1000199
Soliman, E. A., El-Moghazy, A. Y., El-Din, M. S. M., & Massoud, M. A. (2013). Microencapsulation of essential oils within alginate: Formulation and in vitro evaluation of antifungal activity. Journal of Encapsulation and Adsorption Sciences, 03(01), 48–55. https://doi.org/10.4236/jeas.2013.31006
Solomon, B., Sahle, F. F., Gebre-Mariam, T., Asres, K., & Neubert, R. H. H. (2012). Microencapsulation of citronella oil for mosquito-repellent application: Formulation and in vitro permeation studies. European Journal of Pharmaceutics and Biopharmaceutics, 80(1), 61–66. https://doi.org/10.1016/j.ejpb.2011.08.003
Tirgar, M., Jinap, S., Zaidul, I. S. M., & Mirhosseini, H. 2015). Suitable coating material for microencapsulation of spray-dried fish oil. Journal of Food Science and Technology, 52(7), 4441–4449. https://doi.org/10.1007/s13197-014-1515-3
Tolun, A., Altintas, Z., & Artik, N. (2016). Microencapsulation of grape polyphenols using maltodextrin and gum Arabic as two alternative coating materials: Development and characterization. Journal of Biotechnology, 239, 23–33. https://doi.org/10.1016/j.jbiotec.2016.10.001
Triyono, K., Suhartatik, N., & Wulandari, Y. W. (2018). Nanoencapsulating of kaffir lime oil with coacervation method using arabic gum and maltodextrin as encapsulant. International Journal of Food and Nutrition Science, 3(1), 43–48.
Vishwakarma, G. S., Gautam, N., Babu, J. N., Mittal, S., & Jaitak, V. (2016). Polymeric encapsulates of essential oils and their constituents: A review of preparation techniques, characterization, and sustainable release mechanisms. Polymer reviews, 56(4), 668–701. https://doi.org/10.1080/15583724.2015.1123725
Xiao, Z., Liu, W., Zhu, G., Zhou, R., & Niu, Y. (2014). Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. Flavour and Fragrance Journal, 29(3), 166–172. https://doi.org/10.1002/ffj.3192
Wang, B., Adhikari, B., & Barrow, C. J. (2014). Optimisation of the microencapsulation of tuna oil in gelatin-sodium hexametaphosphate using complex coacervation. Food Chemistry, 158, 358–365. https://doi.org/10.1016/j.foodchem.2014.02.135
Wang, B., Akanbi, T. O., Agyei, D., Holland, B. J., & Barrow, C. J. (2018). Coacervation technique as an encapsulation and delivery tool for hydrophobic bio-functional compounds. In Role of Materials Science in Food Bioengineering (pp. 235-261). Academic Press.
Yu, F., Li, Z., Zhang, T., Wei, Y., Xue, Y., & Xue, C. (2017). Influence of encapsulation techniques on the structure, physical properties, and thermal stability of fish oil microcapsules by spray drying. Journal of Food Process Engineering, 40(6), 1–9. https://doi.org/10.1111/jfpe.12576
Yuen, C. W. M., Yip, J., Liu, L., Cheuk, K., Kan, C. W., Cheung, H. C., & Cheng, S. Y. (2012). Chitosan microcapsules loaded with either miconazole nitrate or clotrimazole, prepared via emulsion technique. Carbohydrate Polymers, 89(3), 795–801. https://doi.org/10.1016/j.carbpol.2012.04.013
Zhang, K., Zhang, H., Hu, X., Bao, S., & Huang, H. (2012). Synthesis and release studies of microalgal oil-containing microcapsules prepared by complex coacervation. Colloids and Surfaces B: Biointerfaces, 89(1), 61–66. https://doi.org/10.1016/j.colsurfb.2011.08.023
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.