Effect of particle size, shape, and weight percentage of hydroxyapatite (HA) on rheological behaviour of polycaprolactone/hydroxyapatite (PCL/HA) composites

Authors

  • Zulaisyah Laja Besar School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Suffiyana Akhbar School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.24191/mjcet.v4i2.14980

Keywords:

Rheology, Polycaprolactone, Hydroxyapatite, Activation energy, Melt flow index (MFI)

Abstract

The aim of this study is to investigate the influence of hydroxyapatite’s (HA) particle size, shape, and variation of HA weight percentage on the rheological behaviour of polycaprolactone/hydroxyapatite (PCL/HA) composite. The composite was produced by melt blending process using a single screw extruder assisted with an ultrasonic wave with varied HA weight content (0 wt.%, 10 wt.%, 20 wt.%, 30 wt.% and 40 wt.%). Two types of HA were used, which are needle shape [HAN] and irregular shape (HAS). The rheological behaviour of the PCL/HA composite was investigated through the melt flow index (MFI) test at a varied temperature of 100, 110, and 120 °C. The result indicated that an increase of HA content decreases the MFI values of the PCL/HA composite. At similar content of HA, PCL/HAN composite has higher activation energy with lower MFI values compared to PCL/HAS composite. In conclusion, this study concluded that the particle size, shape, and weight percentage of HA significantly affect the rheological behaviour of PCL/HA composites.

References

Akhbar, S., Subuki, I., Sharudin, R., & Ismail, M.H. (2018). Performance of polycaprolactone/hydroxyapatite (PCL/HA) composite blended by ultrasound assisted melt blending. Journal of Mechanical Engineering, 5(5), 235–250.

Anpilogova, V. S., Kravchenko, T. P., Nikolaeva, N. Y., Lin, N. Z., & Osipchik, V. S. (2017). The rheological properties of composite materials based on high-density polyethylene. International Polymer Science and Technology, 44(7), 9–12. https://doi.org/10.1177/0307174X1704400702

Chern, M. J., Yang, L. Y., Shen, Y. K., & Hung, J. H. (2013). 3D scaffold with PCL combined biomedical ceramic materials for bone tissue regeneration. International Journal of Precision Engineering and Manufacturing, 14(12), 2201–2207. https://doi.org/10.1007/s12541-013-0298-1

Escócio, V. A. (2015). Rheological behavior of renewable polyethylene (HDPE) composites and sponge gourd (Luffa cylindrica) residue. International Journal of Polymer Science, 2015, Article ID 714352, https://doi.org/10.1155/2015/714352

Ghorbani, F. M., Kaffashi, B., Shokrollahi, P., Akhlaghi, S. & Hedenqvist, M. S. (2016). Effect of hydroxyapatite nanoparticles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends. Materials Science and Engineering: C, 59, 980–989. https://doi.org/10.1016/j.msec.2015.10.076

Goloshchapov, D. L. (2013). Synthesis of nanocrystalline hydroxyapatite by precipitation using hen’s eggshell. Ceramic International, 39(4), 4539–4549. https://doi.org/10.1016/j.ceramint.2012.11.050

Gómez-Lizárraga, K. K., Flores-Morales, C., Del Prado-Audelo, M. L., Álvarez-Pérez, M. A., Piña-Barba, M. C., & Escobedo, C. (2017). Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. Materials Science and Engineering: C, 79, 326–335. https://doi.org/ 10.1016/j.msec.2017.05.003

Hsissou, R., Bekhta, A., Dagdag, O., El Bachiri, A., Rafik, M., & Elharf, A. (2020). Rheological properties of composite polymers and hybrid nanocomposites., Heliyon, 6(6), e04187. https://doi.org/10.1016/j.heliyon.2020.e04187

Huang, B., & Bártolo, P. J. (2018). Rheological characterization of polymer/ceramic blends for 3D printing of bone scaffolds. Polymer Testing, 68, 365–378. https://doi.org/10.1016/j.polymertesting.2018.04.033

Huang, B., Caetano, G., Vyas, C., Blaker, J. J., Diver, C. & Bártolo, P. (2018). Polymer-ceramic composite scaffolds: The effect of hydroxyapatite and β-tri-calcium phosphate. Materials (Basel). 11(1), 129, https://doi.org/10.3390/ma11010129.

Jiao, Z., Luo, B., Xiang, S., Ma, H., Yu, Y. & Yang, W. (2019). 3D printing of HA / PCL composite tissue engineering scaffolds. Advanced Industrial and Engineering Polymer Research, 2(4), 196-202. https://doi.org/10.1016/j.aiepr.2019.09.003

Jing, X., Mi, H. Y., & Turng, L. S. (2017). Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming. Materials Science and Engineering: C, 72, 53–61. https://doi.org/10.1016/j.msec.2016.11.049

Kim, H-L., Jung , G-Y., Yoon , J-H., Han, J-S., Park, Y-J., Kim , D-G., Zhang , M., Kim, D-J. (2015). Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Materials Science and Engineering: C, 54, 20–25. https://doi.org/10.1016/j.msec.2015.04.033

Kim, J.W., Shin, K. H., Koh, Y. H., Hah, M. J., Moon, J. & Kim, H. E. (2017). Production of poly(ε-caprolactone)/hydroxyapatite composite scaffolds with a tailored macro/micro-porous structure, high mechanical properties, and excellent bioactivity. Materials (Basel), 10 (10), 1123. https://doi.org/10.3390/ma10101123.

Lou, Y., Lei, Q., & Wu, G. (2019). Research on polymer viscous flow activation energy and non-Newtonian index model based on feature size. Advances in Polymer Technology, Volume 2019, Article ID 1070427, https://doi.org/10.1155/2019/1070427

Patel, H. S., Patel, V. C., & Patel, S. (2014). Synthesis and characterization of linear homopolyesters containing s-triazine rings. International Journal of Polymeric Materials and Polymeric Biomaterials, 37–41. https://doi.org/ 10.1080/00914030600735130

Poletto, M. (2018). Influence of coupling agents on rheological, thermal expansion and morphological properties of recycled polypropylene wood flour composites. Maderas: Ciencia y Tecnologia, 20(4), 563–570. https://doi.org/10.4067/S0718-221X2018005004401

Salmah, H., Lim, B. Y., & Teh, P. L. (2012). Melt rheological behavior and thermal properties of low-density polyethylene/palm kernel shell composites: Effect of polyethylene acrylic acid. International Journal of Polymeric Materials and Polymeric Biomaterials, 61(14),1091–1101. https://doi.org/10.1080/00914037.2011.617336

Sangeeta, D., & Shubhajit, D. (2021). Properties for polymer, metal and ceramic based composite materials. Encyclopaedia of Materials: Composites, 2, 815–821. 10.1016/B978-0-12-803581-8.11897-1

Saw, L. T., Abdul Rahim, N. A., & Du Ngoc, U. L. (2014). Rheological and thermal behavior of polypropylene-kaolin composites. Malaysian Journal of Analytical Sciences,18(2), 360–367.

Shojaeiarani, J., Bajwa, D., Jiang, L., Liaw, J., & Hartman, K. (2019). Insight on the influence of nano zinc oxide on the thermal, dynamic mechanical, and flow characteristics of Poly(lactic acid)–zinc oxide composites. Polymer Engineering Science, 59(6), 1242–1249. https://doi.org/10.1002/pen.25107

Xiao, X., Liu, Æ. R., & Huang, Æ. Q. (2009). Preparation and characterization of hydroxyapatite / polycaprolactone – chitosan composites, Journal of Material Science, Material Medicine, 20(12), 2375–2383, https://doi.org/10.1007/s10856-009-3810-5.

Downloads

Published

2021-10-31

How to Cite

Besar, Z. L., & Akhbar, S. (2021). Effect of particle size, shape, and weight percentage of hydroxyapatite (HA) on rheological behaviour of polycaprolactone/hydroxyapatite (PCL/HA) composites. Malaysian Journal of Chemical Engineering &Amp; Technology, 4(2), 132–136. https://doi.org/10.24191/mjcet.v4i2.14980