Emission level of air pollutants during 2019 pre-haze, haze, and post-haze episodes in Kuala Lumpur and Putrajaya
DOI:
https://doi.org/10.24191/mjcet.v4i2.14299Keywords:
Air pollutants , Air pollution , Backward trajectory , Local hazeAbstract
Nowadays, due to population growth and industrialisation, air quality in Malaysia is becoming a critical threat. Air pollution has become a serious issue due to its impacts on humans, animals, and the environment. Malaysia experienced air quality deterioration in 2019 when the episodes of haze happened from July to September. It was due to the local and transboundary sources such as vehicles, factories, power plants, and biomass burning from Sumatra. This study aims to differentiate the level of the potential air pollutants, examine the influence of meteorological factors on the potential air pollutants and determine the local and transboundary impact on the potential air pollutants during episodes of pre-haze, haze, and post-haze in Kuala Lumpur and Putrajaya in 2019. Secondary physical and data on meteorology were obtained from the continuous ambient air quality monitoring (CAQM) stations by the Malaysian Department of Environment (DOE). The data obtained from CAQM were physical: particulate matters (PM2.5 & PM10), carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and level ozone (O3); as well as meteorological: temperature (T), relative humidity (RH), wind speed (WS), and wind direction (WDir). Overall, the particulate matter (PM2.5, PM10) and, carbon monoxide which are the pollutants that involve the formation of haze in Kuala Lumpur and Putrajaya are higher during haze episodes compared to pre-haze and post-haze episodes while the other pollutants (NO2, SO2, O3) are fluctuated throughout the entire episode due to its sources and the influence of meteorological factors. The backward trajectory indicated that the air pollutants are influenced by wind direction from South West Malaysia (SWM), and North East Malaysia throughout the entire year.
References
Abdullah, N. A., Shuhaimi, S. H., Toh, Y. Y., Shafee, A., & Maznorizan, M. (2011). The study of seasonal variation of PM10 concentration in Peninsula, Sabah and Sarawak. Malaysian Meteorological Department, 9, 1–28.
Ahmed, M. J., Ali, M. K., Hossain, M., Siraj, S., & Ahsan, M. A. (2012). Determination of trace metals in air of Chittagong city-Bangladesh. European Journal of Chemistry, 3(4), 416–420. https://doi.org/10.5155/eurjchem.3.4.416-420.645
Alatas, S. F. (2019). Against the grain: The political ecology of the haze | The Edge Markets. https://www.theedgemarkets.com/article/against-grain-political-ecology-haze
Alias, N. F., Khan, M. F., Sairi, N. A., Zain, S. M., Suradi, H., Rahim, H. A., Banerjee, T., Bari, M. A., Othman, M., & Latif, M. T. (2020). Characteristics, Emission Sources, and Risk Factors of Heavy Metals in PM2.5 from Southern Malaysia. ACS Earth and Space Chemistry, 4(8), 1309–1323. https://doi.org/10.1021/acsearthspacechem.0c00103
Anderson, J. O., Thundiyil, J. G., & Stolbach, A. (2012). Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. Journal of Medical Toxicology, 8(2), 166–175. https://doi.org/10.1007/s13181-011-0203-1
Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34(12), 2063–2101. https://doi.org/https://doi.org/10.1016/S1352-2310(99)00460-4
Australia State of Environment. (2016). Pollution types | Australia State of the Environment Report. https://soe.environment.gov.au/theme/ambient-air-quality/topic/2016/pollution-types
Azmi, S., Latif, M. T., Ismail, A., & Juneng, L. (2010). Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia. Air Quality, Atmosphere, & Health, 3, 53–64. https://doi.org/10.1007/s11869-009-0051-1
Barrientos. (2020). Indonesia Palm Oil Production by Year (1000 MT). https://www.indexmundi.com/agriculture/?country=id&commodity=palm-oil&graph=production
BBC News. (2019). Indonesia haze: Why do forests keep burning? https://www.bbc.com/news/world-asia-34265922
Bhawar, R. L., & Devara, P. C. S. (2010). Study of successive contrasting monsoons (2001–2002) in terms of aerosol variability over a tropical station Pune, India. Atmospheric Chemistry and Physics, 10(1), 29–37. https://doi.org/10.5194/acp-10-29-2010
Che, H., Zhang, X., Li, Y., Zhou, Z., & Qu, J. J. (2007). Horizontal visibility trends in China 1981–2005. Geophysical Research Letters, 34(24). https://doi.org/10.1029/2007GL031450
Csavina, J., Field, J., Félix, O., Corral-Avitia, A. Y., Sáez, A. E., & Betterton, E. A. (2014). Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Science of The Total Environment, 487, 82–90. https://doi.org/https://doi.org/10.1016/j.scitotenv.2014.03.138
Dawson, J. P., Adams, P. J., & Pandis, S. N. (2007). Sensitivity of PM2.5 to climate in the Eastern US: a modeling case study. Atmospheric Chemistry and Physics, 7(16), 4295–4309. https://doi.org/10.5194/acp-7-4295-2007
Deng, H., Tan, H., Li, F., Cai, M., Chan, P. W., Xu, H., Huang, X. & Wu, D. (2016). Impact of relative humidity on visibility degradation during a haze event: A case study. Science of the Total Environment, 569–570, 1149–1158. https://doi.org/10.1016/j.scitotenv.2016.06.190
Forsyth, T. (2014). Public concerns about transboundary haze: A comparison of Indonesia, Singapore, and Malaysia. Global Environmental Change, 25(1), 76–86. https://doi.org/10.1016/j.gloenvcha.2014.01.013
Friedlander, S. K. (2000). Smoke, dust, and haze : fundamentals of aerosol dynamics. Oxford University Press.
Grove, R. H. (2007). The Great El Niño of 1789-93 and its global consequences: Reconstructing an extreme climate event in world environmental history. Medieval History Journal, 10(1–2), 75–98. https://doi.org/10.1177/097194580701000203
Gupta, A., & David Cheong, K. W. (2007). Physical characterization of particulate matter and ambient meteorological parameters at different indoor–outdoor locations in Singapore. Building and Environment, 42(1), 237–245. https://doi.org/https://doi.org/10.1016/j.buildenv.2006.02.017
Hussain, H. (2019). Jerebu bakal pulih, ribut petir pula menyusul. Retrieved November 16, 2020, from https://www.sinarharian.com.my/article/48783/BERITA/Nasional/Jerebu-bakal-pulih-ribut-petir-pula-menyusul
Ismail, M. H. (2019). Malaysia berdepan jerebu bermula hari ini.
Jabatan Pengangkutan Jalan Malaysia. (2020). Online Statistic - JPJ Portal - Jabatan Pengangkutan Jalan. https://www.jpj.gov.my/en/web/main-site/statistik-dalam-talian
Jamhari, A. A., Sahani, M., Latif, M. T., Chan, K. M., Tan, H. S., Khan, M. F., & Mohd Tahir, N. (2014). Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmospheric Environment, 86, 16–27. https://doi.org/https://doi.org/10.1016/j.atmosenv.2013.12.019
Jenkin, M. E., & Clemitshaw, K. C. (2000). Ozone and other secondary photochemical pollutants: Chemical processes governing their formation in the planetary boundary layer. Atmospheric Environment, 35(16), 2499–2527. Elsevier Science Ltd. https://doi.org/10.1016/S1352-2310(99)00478-1
Juneng, L., Latif, M. T., Tangang, F. T., & Mansor, H. (2009). Spatio-temporal characteristics of PM10 concentration across Malaysia. Atmospheric Environment, 43(30), 4584–4594. https://doi.org/https://doi.org/10.1016/j.atmosenv.2009.06.018
Kamaruzzaman, A., Saudi, A. S. M., Azid, A., Balakrishnan, A., Abu, I. F., & Amin, N. A. (2017). Assessment on air quality pattern: A case study in Putrajaya, Malaysia. Journal of Fundamental and Applied Sciences, 4(1), 9–10. https://doi.org/10.4314/jfas.v9i4S.44
Karar, K., & Gupta, A. K. (2006). Seasonal variations and chemical characterization of ambient PM10 at residential and industrial sites of an urban region of Kolkata (Calcutta), India. Atmospheric Research, 81, 36–53. https://doi.org/10.1016/j.atmosres.2005.11.003
Khan, M. F., Latif, M. T., Saw, W. H., Amil, N., Nadzir, M. S. M., Sahani, M., Tahir, N. M., & Chung, J. X. (2016). Fine particulate matter in the tropical environment: Monsoonal effects, source apportionment, and health risk assessment. Atmospheric Chemistry and Physics, 16(2), 597–617. https://doi.org/10.5194/acp-16-597-2016
Khan, M. F., Hamid, A. H., Rahim, H. A., Maulud, K. N. A., Latif, M. T., Nadzir, M. S. M., Sahani, M., Qin, K., Kumar, P., Varkkey, H., Faruque, M. R. I., Guan, N. C., Ahmadi, S. P., & Yusoff, S. (2020). El Niño driven haze over the Southern Malaysian Peninsula and Borneo. Science of the Total Environment, 730, 139091. https://doi.org/10.1016/j.scitotenv.2020.139091
Khan, M. F., Latif, M. T., Lim, C. H., Amil, N., Jaafar, S. A., Dominick, D., Nadzir, M. S. M., Sahani, M., & Tahir, N. M. (2015). Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5. Atmospheric Environment, 106, 178–190. https://doi.org/10.1016/j.atmosenv.2015.01.077
Khan, Md Firoz, Sulong, N. A., Latif, M. T., Nadzir, M. S. M., Amil, N., Hussain, D. F. M., Lee V., Hosaini, P. N., Shaharom, S., Yusoff, N. A. Y. M., Hoque, H. M. S., Chung, J. X., Sahani, M., Tahir, N. M., Juneng, L., Maulud, K. N. A., Abdullah, S. M. S., Fujii, Y., Tohno, S., & Mizohata, A. (2016). Comprehensive assessment of PM2.5 physicochemical properties during the Southeast Asia dry season (southwest monsoon). Journal of Geophysical Research, 121(24), 14589–14611. https://doi.org/10.1002/2016JD025894
Koh, J., & Ho, S. (2013). Haze pollution | Infopedia. https://eresources.nlb.gov.sg/infopedia/articles/SIP_2013-08-30_185150.html
Laden, F., Neas, L. M., Dockery, D. W., & Schwartz, J. (2000). Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environmental Health Perspectives, 108(10), 941–947. https://doi.org/10.1289/ehp.00108941
Luan, T., Guo, X., Guo, L., & Zhang, T. (2018). Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing. Atmos. Chem. Phys., 18(1), 203–225. https://doi.org/10.5194/acp-18-203-2018
Mabahwi, N. A. B., Leh, O. L. H., & Omar, D. (2014). Human Health and Wellbeing: Human Health Effect of Air Pollution. Procedia - Social and Behavioral Sciences, 153, 221–229. https://doi.org/https://doi.org/10.1016/j.sbspro.2014.10.056
Martins, N. R., & Carrilho da Graça, G. (2018). Impact of PM2.5 in indoor urban environments: A review. Sustainable Cities and Society, 42, 259–275. https://doi.org/https://doi.org/10.1016/j.scs.2018.07.011
Mishra, A. K. (2015). Electrochemical Ozone Production. In Nanocomposites in Wastewater Treatment. CRC Press.
Mohamad, N. D., Ash’aari, Z. H., & Othman, M. (2015). Preliminary assessment of air pollutant sources identification at selected monitoring stations in Klang Valley, Malaysia. Procedia Environmental Sciences, 30, 121–126.
Mohanakumar K. (2008). Stratosphere Troposphere Interactions: An Introduction. Springer Netherlands. https://doi.org/10.1007/978-1-4020-8217-7
Official Portal of Department of Environment. (2015). Chronology of Haze Episodes n Malaysia. https://www.doe.gov.my/portalv1/en/info-umum/info-kualiti-udara/kronologi-episod-jerebu-di-malaysia/319123
Peavy, H. S., Rowe, D. R., & Tchobanoglous, G. (1985). Environmental Engineering.
Nadason, M. (2015). Pertambahan Kenderaan Punca Sesak, Pencemaran. http://www.konsumerkini.net.my/v2/index.php/berita-terkini/rencana/1052-pertambahan-kenderaan-punca-sesak-pencemaran
Rahman, S. A., Hamzah, M. S., Wood, A. K., Elias, M. S., Salim, N. A. A., & Sanuri, E. (2011). Sources apportionment of fine and coarse aerosol in Klang Valley, Kuala Lumpur using positive matrix factorization. Atmospheric Pollution Research, 2(2), 197–206. https://doi.org/10.5094/APR.2011.025
Rahman, S. R. A., Ismail, S. N. S., Raml, M. F., Latif, M. T., Abidin, E. Z., & Praveena, S. M. (2015). The assessment of ambient air pollution trend in Klang Valley, Malaysia. World Environment, 5(1), 1–11.
Salahudin, S. N., Abdullah, M. M., & Newaz, N. A. (2013). Emissions : Sources, policies and development in Malaysia. International Journal of Education and Research, 1(7), 1–12.
Sulong, N. A., Latif, M. T., Khan, M. F., Amil, N., Ashfold, M. J., Wahab, M. I. A., Chan, K. M., & Sahani, M. (2017). Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia. Science of the Total Environment, 601–602, 556–570. https://doi.org/10.1016/j.scitotenv.2017.05.153
Union of Concerned Scientists. (2014). Vehicles, Air Pollution & Human Health. https://www.ucsusa.org/resources/vehicles-air-pollution-human-health
United States Environmental Protection Agency (EPA). (2005). Nitrogen Oxides (NOx), Why and How They Are Controlled. http://www.epa.gov/ttn/catc
US EPA, O. (2017). 2017 National Emissions Inventory (NEI) Data. https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data
Wang, B., Eum, K.-D., Kazemiparkouhi, F., Li, C., Manjourides, J., Pavlu, V., & Suh, H. (2020). The impact of long-term PM2.5 exposure on specific causes of death: exposure-response curves and effect modification among 53 million U.S. Medicare beneficiaries. Environmental Health, 19(1), 20. https://doi.org/10.1186/s12940-020-00575-0
WHO. (2010). WHO guidelines for indoor air quality: selected pollutants. Encyclopedia of Health, 406–418. https://doi.org/10.1016/B978-0-12-384947-2.00550-X
Yassen, M. E., & Jahi, J. M. (2007). Investigation of Variations and Trends in TSP Concentrations in The Klang Valley Region, Malaysia. Malaysian Journal of Environmental Management, 8, 57–68.
Zainal. (2016). Root Problem of Forest Fire And Solutions in Completion (Study in The Riau Province).
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.